Dynamics of multilayer networks in the vicinity of temporary minima

A dynamical system model is derived for a single-output, two-layer neural network, which learns according to the back-propagation algorithm. Particular emphasis is placed on the analysis of the occurrence of temporary minima. The Jacobian matrix of the system is derived, whose eigenvalues characteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 1999, Vol.12 (1), p.43-58
Hauptverfasser: Ampazis, Nikolaos, Perantonis, S.J., Taylor, J.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 43
container_title Neural networks
container_volume 12
creator Ampazis, Nikolaos
Perantonis, S.J.
Taylor, J.G.
description A dynamical system model is derived for a single-output, two-layer neural network, which learns according to the back-propagation algorithm. Particular emphasis is placed on the analysis of the occurrence of temporary minima. The Jacobian matrix of the system is derived, whose eigenvalues characterize the evolution of learning. Temporary minima correspond to critical points of the phase plane trajectories, and the bifurcation of the Jacobian matrix eigenvalues signifies their abandonment. Following this analysis, we show that the employment of constrained optimization methods can decrease the time spent in the vicinity of this type of minima. A number of numerical results illustrates the analytical conclusions.
doi_str_mv 10.1016/S0893-6080(98)00103-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26924689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608098001038</els_id><sourcerecordid>26924689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-77b9b3a2382a16b235164b59508d8b15f25ecb68a9262e00a4bf6f6716e6ca873</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWquPoMxCpC5Gc5ncViL1CoILdR0y6RmMzqUmU2Xe3tQW3enqwOH7z-VD6IDgU4KJOHvESrNcYIUnWp1gTDDL1QYaESV1TqWim2j0g-yg3RhfMcZCFWwb7RAqBJVEjND0cmht413MuiprFnXvaztAyFroP7vwFjPfZv0LZB_e-db3wxLroZl3wYYha1KvsXtoq7J1hP11HaPn66un6W1-_3BzN724z13BaZ9LWeqSWcoUtUSUlHEiipJrjtVMlYRXlIMrhbKaCgoY26KsRCXSmSCcVZKN0fFq7jx07wuIvWl8dFDXtoVuEQ0VmhYi_TxGkz9BorhmWmvOEspXqAtdjAEqMw_ppTAYgs1StPkWbZYWjVbmW7RRKXe4XrEoG5j9ptZmE3C0Bmx0tq6CbZ2Pv5wSUkqcsPMVBknch4dgovPQOpj5AK43s87_c8kXnHuY9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859399953</pqid></control><display><type>article</type><title>Dynamics of multilayer networks in the vicinity of temporary minima</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ampazis, Nikolaos ; Perantonis, S.J. ; Taylor, J.G.</creator><creatorcontrib>Ampazis, Nikolaos ; Perantonis, S.J. ; Taylor, J.G.</creatorcontrib><description>A dynamical system model is derived for a single-output, two-layer neural network, which learns according to the back-propagation algorithm. Particular emphasis is placed on the analysis of the occurrence of temporary minima. The Jacobian matrix of the system is derived, whose eigenvalues characterize the evolution of learning. Temporary minima correspond to critical points of the phase plane trajectories, and the bifurcation of the Jacobian matrix eigenvalues signifies their abandonment. Following this analysis, we show that the employment of constrained optimization methods can decrease the time spent in the vicinity of this type of minima. A number of numerical results illustrates the analytical conclusions.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(98)00103-8</identifier><identifier>PMID: 12662716</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Back-propagation ; Computer science; control theory; systems ; Connectionism. Neural networks ; Constrained optimization ; Dynamical systems ; Eigenvalues ; Exact sciences and technology ; Feed-forward neural networks ; Jacobian matrix ; Learning and adaptive systems ; Supervised learning ; Temporary minima</subject><ispartof>Neural networks, 1999, Vol.12 (1), p.43-58</ispartof><rights>1998 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-77b9b3a2382a16b235164b59508d8b15f25ecb68a9262e00a4bf6f6716e6ca873</citedby><cites>FETCH-LOGICAL-c452t-77b9b3a2382a16b235164b59508d8b15f25ecb68a9262e00a4bf6f6716e6ca873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0893-6080(98)00103-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1867770$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12662716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ampazis, Nikolaos</creatorcontrib><creatorcontrib>Perantonis, S.J.</creatorcontrib><creatorcontrib>Taylor, J.G.</creatorcontrib><title>Dynamics of multilayer networks in the vicinity of temporary minima</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>A dynamical system model is derived for a single-output, two-layer neural network, which learns according to the back-propagation algorithm. Particular emphasis is placed on the analysis of the occurrence of temporary minima. The Jacobian matrix of the system is derived, whose eigenvalues characterize the evolution of learning. Temporary minima correspond to critical points of the phase plane trajectories, and the bifurcation of the Jacobian matrix eigenvalues signifies their abandonment. Following this analysis, we show that the employment of constrained optimization methods can decrease the time spent in the vicinity of this type of minima. A number of numerical results illustrates the analytical conclusions.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Back-propagation</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Constrained optimization</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Feed-forward neural networks</subject><subject>Jacobian matrix</subject><subject>Learning and adaptive systems</subject><subject>Supervised learning</subject><subject>Temporary minima</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWquPoMxCpC5Gc5ncViL1CoILdR0y6RmMzqUmU2Xe3tQW3enqwOH7z-VD6IDgU4KJOHvESrNcYIUnWp1gTDDL1QYaESV1TqWim2j0g-yg3RhfMcZCFWwb7RAqBJVEjND0cmht413MuiprFnXvaztAyFroP7vwFjPfZv0LZB_e-db3wxLroZl3wYYha1KvsXtoq7J1hP11HaPn66un6W1-_3BzN724z13BaZ9LWeqSWcoUtUSUlHEiipJrjtVMlYRXlIMrhbKaCgoY26KsRCXSmSCcVZKN0fFq7jx07wuIvWl8dFDXtoVuEQ0VmhYi_TxGkz9BorhmWmvOEspXqAtdjAEqMw_ppTAYgs1StPkWbZYWjVbmW7RRKXe4XrEoG5j9ptZmE3C0Bmx0tq6CbZ2Pv5wSUkqcsPMVBknch4dgovPQOpj5AK43s87_c8kXnHuY9A</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Ampazis, Nikolaos</creator><creator>Perantonis, S.J.</creator><creator>Taylor, J.G.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1999</creationdate><title>Dynamics of multilayer networks in the vicinity of temporary minima</title><author>Ampazis, Nikolaos ; Perantonis, S.J. ; Taylor, J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-77b9b3a2382a16b235164b59508d8b15f25ecb68a9262e00a4bf6f6716e6ca873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Back-propagation</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Constrained optimization</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Feed-forward neural networks</topic><topic>Jacobian matrix</topic><topic>Learning and adaptive systems</topic><topic>Supervised learning</topic><topic>Temporary minima</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ampazis, Nikolaos</creatorcontrib><creatorcontrib>Perantonis, S.J.</creatorcontrib><creatorcontrib>Taylor, J.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ampazis, Nikolaos</au><au>Perantonis, S.J.</au><au>Taylor, J.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of multilayer networks in the vicinity of temporary minima</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>1999</date><risdate>1999</risdate><volume>12</volume><issue>1</issue><spage>43</spage><epage>58</epage><pages>43-58</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>A dynamical system model is derived for a single-output, two-layer neural network, which learns according to the back-propagation algorithm. Particular emphasis is placed on the analysis of the occurrence of temporary minima. The Jacobian matrix of the system is derived, whose eigenvalues characterize the evolution of learning. Temporary minima correspond to critical points of the phase plane trajectories, and the bifurcation of the Jacobian matrix eigenvalues signifies their abandonment. Following this analysis, we show that the employment of constrained optimization methods can decrease the time spent in the vicinity of this type of minima. A number of numerical results illustrates the analytical conclusions.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>12662716</pmid><doi>10.1016/S0893-6080(98)00103-8</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 1999, Vol.12 (1), p.43-58
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_26924689
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Artificial intelligence
Back-propagation
Computer science
control theory
systems
Connectionism. Neural networks
Constrained optimization
Dynamical systems
Eigenvalues
Exact sciences and technology
Feed-forward neural networks
Jacobian matrix
Learning and adaptive systems
Supervised learning
Temporary minima
title Dynamics of multilayer networks in the vicinity of temporary minima
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20multilayer%20networks%20in%20the%20vicinity%20of%20temporary%20minima&rft.jtitle=Neural%20networks&rft.au=Ampazis,%20Nikolaos&rft.date=1999&rft.volume=12&rft.issue=1&rft.spage=43&rft.epage=58&rft.pages=43-58&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(98)00103-8&rft_dat=%3Cproquest_cross%3E26924689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859399953&rft_id=info:pmid/12662716&rft_els_id=S0893608098001038&rfr_iscdi=true