Discrete Hamilton's equations for viscous compressible fluid dynamics
Lagrange’s and Hamilton’s equations are used extensively in numerical modeling of rigid body dynamics and continuum solid dynamics problems. The use of energy methods in viscous compressible flow problems has been by contrast rather limited, largely confined to the development of basic balance laws...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 1999-07, Vol.178 (1-2), p.1-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 1-2 |
container_start_page | 1 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 178 |
creator | Fahrenthold, E.P. Koo, J.C. |
description | Lagrange’s and Hamilton’s equations are used extensively in numerical modeling of rigid body dynamics and continuum solid dynamics problems. The use of energy methods in viscous compressible flow problems has been by contrast rather limited, largely confined to the development of basic balance laws in partial differential equation form. However, finite element interpolation of the modeled flow field allows for the direct application of the discrete form of Hamilton’s equations to viscous compressible fluid dynamics in Eulerian frames. The resulting model is a true energy formulation, developed without reference to the partial differential balance equations which underlie conventional finite difference, weighted residual finite element, and finite volume methods. |
doi_str_mv | 10.1016/S0045-7825(99)00100-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26923631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782599001000</els_id><sourcerecordid>26923631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-71905d05780e4ad9fba4d96c4e850ba5379434598b8b163a65fde72daef72da43</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiD-HFYnWw2u8lJpFYrFDyo55BNZiGyH22yLfTfm36gR-cwc3nemXdeQi4p3FOgxcMHQM7TUmT8Vso7AAqQwhEZUVHKNKNMHJPRL3JKzkL4hliCZiMyfXbBeBwwmenWNUPf3YQElys9uL4LSd37ZB2JfhUS07cLjyG4qsGkblbOJnbTRZUJ5-Sk1k3Ai8Mck6-X6edkls7fX98mT_PUsKIc0pJK4BZ4KQBzbWVd6dzKwuQoOFSas1LmLOdSVKKiBdMFry2WmdVYb3vOxuR6v3fh--UKw6DaaA6bRncYLaqskBkrGI0g34PG9yF4rNXCu1b7jaKgtqGpXWhqm4iSUu1CUxB1V4cDOhjd1F53xoU_scxBsixij3sM47Nrh14F47AzaJ1HMyjbu38O_QDjiIDa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26923631</pqid></control><display><type>article</type><title>Discrete Hamilton's equations for viscous compressible fluid dynamics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fahrenthold, E.P. ; Koo, J.C.</creator><creatorcontrib>Fahrenthold, E.P. ; Koo, J.C.</creatorcontrib><description>Lagrange’s and Hamilton’s equations are used extensively in numerical modeling of rigid body dynamics and continuum solid dynamics problems. The use of energy methods in viscous compressible flow problems has been by contrast rather limited, largely confined to the development of basic balance laws in partial differential equation form. However, finite element interpolation of the modeled flow field allows for the direct application of the discrete form of Hamilton’s equations to viscous compressible fluid dynamics in Eulerian frames. The resulting model is a true energy formulation, developed without reference to the partial differential balance equations which underlie conventional finite difference, weighted residual finite element, and finite volume methods.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(99)00100-0</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Compressible flows; shock and detonation phenomena ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Shock-wave interactions and shock effects ; Shock-wave interactions and shockeffects</subject><ispartof>Computer methods in applied mechanics and engineering, 1999-07, Vol.178 (1-2), p.1-22</ispartof><rights>1999 Elsevier Science S.A.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-71905d05780e4ad9fba4d96c4e850ba5379434598b8b163a65fde72daef72da43</citedby><cites>FETCH-LOGICAL-c367t-71905d05780e4ad9fba4d96c4e850ba5379434598b8b163a65fde72daef72da43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782599001000$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1940932$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fahrenthold, E.P.</creatorcontrib><creatorcontrib>Koo, J.C.</creatorcontrib><title>Discrete Hamilton's equations for viscous compressible fluid dynamics</title><title>Computer methods in applied mechanics and engineering</title><description>Lagrange’s and Hamilton’s equations are used extensively in numerical modeling of rigid body dynamics and continuum solid dynamics problems. The use of energy methods in viscous compressible flow problems has been by contrast rather limited, largely confined to the development of basic balance laws in partial differential equation form. However, finite element interpolation of the modeled flow field allows for the direct application of the discrete form of Hamilton’s equations to viscous compressible fluid dynamics in Eulerian frames. The resulting model is a true energy formulation, developed without reference to the partial differential balance equations which underlie conventional finite difference, weighted residual finite element, and finite volume methods.</description><subject>Compressible flows; shock and detonation phenomena</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Shock-wave interactions and shockeffects</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiD-HFYnWw2u8lJpFYrFDyo55BNZiGyH22yLfTfm36gR-cwc3nemXdeQi4p3FOgxcMHQM7TUmT8Vso7AAqQwhEZUVHKNKNMHJPRL3JKzkL4hliCZiMyfXbBeBwwmenWNUPf3YQElys9uL4LSd37ZB2JfhUS07cLjyG4qsGkblbOJnbTRZUJ5-Sk1k3Ai8Mck6-X6edkls7fX98mT_PUsKIc0pJK4BZ4KQBzbWVd6dzKwuQoOFSas1LmLOdSVKKiBdMFry2WmdVYb3vOxuR6v3fh--UKw6DaaA6bRncYLaqskBkrGI0g34PG9yF4rNXCu1b7jaKgtqGpXWhqm4iSUu1CUxB1V4cDOhjd1F53xoU_scxBsixij3sM47Nrh14F47AzaJ1HMyjbu38O_QDjiIDa</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Fahrenthold, E.P.</creator><creator>Koo, J.C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990701</creationdate><title>Discrete Hamilton's equations for viscous compressible fluid dynamics</title><author>Fahrenthold, E.P. ; Koo, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-71905d05780e4ad9fba4d96c4e850ba5379434598b8b163a65fde72daef72da43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Compressible flows; shock and detonation phenomena</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Shock-wave interactions and shockeffects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahrenthold, E.P.</creatorcontrib><creatorcontrib>Koo, J.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahrenthold, E.P.</au><au>Koo, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Hamilton's equations for viscous compressible fluid dynamics</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>178</volume><issue>1-2</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>Lagrange’s and Hamilton’s equations are used extensively in numerical modeling of rigid body dynamics and continuum solid dynamics problems. The use of energy methods in viscous compressible flow problems has been by contrast rather limited, largely confined to the development of basic balance laws in partial differential equation form. However, finite element interpolation of the modeled flow field allows for the direct application of the discrete form of Hamilton’s equations to viscous compressible fluid dynamics in Eulerian frames. The resulting model is a true energy formulation, developed without reference to the partial differential balance equations which underlie conventional finite difference, weighted residual finite element, and finite volume methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(99)00100-0</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 1999-07, Vol.178 (1-2), p.1-22 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_26923631 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Compressible flows shock and detonation phenomena Computational methods in fluid dynamics Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics Shock-wave interactions and shock effects Shock-wave interactions and shockeffects |
title | Discrete Hamilton's equations for viscous compressible fluid dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Hamilton's%20equations%20for%20viscous%20compressible%20fluid%20dynamics&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Fahrenthold,%20E.P.&rft.date=1999-07-01&rft.volume=178&rft.issue=1-2&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(99)00100-0&rft_dat=%3Cproquest_cross%3E26923631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26923631&rft_id=info:pmid/&rft_els_id=S0045782599001000&rfr_iscdi=true |