Discrete Hamilton's equations for viscous compressible fluid dynamics

Lagrange’s and Hamilton’s equations are used extensively in numerical modeling of rigid body dynamics and continuum solid dynamics problems. The use of energy methods in viscous compressible flow problems has been by contrast rather limited, largely confined to the development of basic balance laws...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 1999-07, Vol.178 (1-2), p.1-22
Hauptverfasser: Fahrenthold, E.P., Koo, J.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1-2
container_start_page 1
container_title Computer methods in applied mechanics and engineering
container_volume 178
creator Fahrenthold, E.P.
Koo, J.C.
description Lagrange’s and Hamilton’s equations are used extensively in numerical modeling of rigid body dynamics and continuum solid dynamics problems. The use of energy methods in viscous compressible flow problems has been by contrast rather limited, largely confined to the development of basic balance laws in partial differential equation form. However, finite element interpolation of the modeled flow field allows for the direct application of the discrete form of Hamilton’s equations to viscous compressible fluid dynamics in Eulerian frames. The resulting model is a true energy formulation, developed without reference to the partial differential balance equations which underlie conventional finite difference, weighted residual finite element, and finite volume methods.
doi_str_mv 10.1016/S0045-7825(99)00100-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26923631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782599001000</els_id><sourcerecordid>26923631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-71905d05780e4ad9fba4d96c4e850ba5379434598b8b163a65fde72daef72da43</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiD-HFYnWw2u8lJpFYrFDyo55BNZiGyH22yLfTfm36gR-cwc3nemXdeQi4p3FOgxcMHQM7TUmT8Vso7AAqQwhEZUVHKNKNMHJPRL3JKzkL4hliCZiMyfXbBeBwwmenWNUPf3YQElys9uL4LSd37ZB2JfhUS07cLjyG4qsGkblbOJnbTRZUJ5-Sk1k3Ai8Mck6-X6edkls7fX98mT_PUsKIc0pJK4BZ4KQBzbWVd6dzKwuQoOFSas1LmLOdSVKKiBdMFry2WmdVYb3vOxuR6v3fh--UKw6DaaA6bRncYLaqskBkrGI0g34PG9yF4rNXCu1b7jaKgtqGpXWhqm4iSUu1CUxB1V4cDOhjd1F53xoU_scxBsixij3sM47Nrh14F47AzaJ1HMyjbu38O_QDjiIDa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26923631</pqid></control><display><type>article</type><title>Discrete Hamilton's equations for viscous compressible fluid dynamics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fahrenthold, E.P. ; Koo, J.C.</creator><creatorcontrib>Fahrenthold, E.P. ; Koo, J.C.</creatorcontrib><description>Lagrange’s and Hamilton’s equations are used extensively in numerical modeling of rigid body dynamics and continuum solid dynamics problems. The use of energy methods in viscous compressible flow problems has been by contrast rather limited, largely confined to the development of basic balance laws in partial differential equation form. However, finite element interpolation of the modeled flow field allows for the direct application of the discrete form of Hamilton’s equations to viscous compressible fluid dynamics in Eulerian frames. The resulting model is a true energy formulation, developed without reference to the partial differential balance equations which underlie conventional finite difference, weighted residual finite element, and finite volume methods.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(99)00100-0</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Compressible flows; shock and detonation phenomena ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Shock-wave interactions and shock effects ; Shock-wave interactions and shockeffects</subject><ispartof>Computer methods in applied mechanics and engineering, 1999-07, Vol.178 (1-2), p.1-22</ispartof><rights>1999 Elsevier Science S.A.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-71905d05780e4ad9fba4d96c4e850ba5379434598b8b163a65fde72daef72da43</citedby><cites>FETCH-LOGICAL-c367t-71905d05780e4ad9fba4d96c4e850ba5379434598b8b163a65fde72daef72da43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782599001000$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1940932$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fahrenthold, E.P.</creatorcontrib><creatorcontrib>Koo, J.C.</creatorcontrib><title>Discrete Hamilton's equations for viscous compressible fluid dynamics</title><title>Computer methods in applied mechanics and engineering</title><description>Lagrange’s and Hamilton’s equations are used extensively in numerical modeling of rigid body dynamics and continuum solid dynamics problems. The use of energy methods in viscous compressible flow problems has been by contrast rather limited, largely confined to the development of basic balance laws in partial differential equation form. However, finite element interpolation of the modeled flow field allows for the direct application of the discrete form of Hamilton’s equations to viscous compressible fluid dynamics in Eulerian frames. The resulting model is a true energy formulation, developed without reference to the partial differential balance equations which underlie conventional finite difference, weighted residual finite element, and finite volume methods.</description><subject>Compressible flows; shock and detonation phenomena</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Shock-wave interactions and shockeffects</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiD-HFYnWw2u8lJpFYrFDyo55BNZiGyH22yLfTfm36gR-cwc3nemXdeQi4p3FOgxcMHQM7TUmT8Vso7AAqQwhEZUVHKNKNMHJPRL3JKzkL4hliCZiMyfXbBeBwwmenWNUPf3YQElys9uL4LSd37ZB2JfhUS07cLjyG4qsGkblbOJnbTRZUJ5-Sk1k3Ai8Mck6-X6edkls7fX98mT_PUsKIc0pJK4BZ4KQBzbWVd6dzKwuQoOFSas1LmLOdSVKKiBdMFry2WmdVYb3vOxuR6v3fh--UKw6DaaA6bRncYLaqskBkrGI0g34PG9yF4rNXCu1b7jaKgtqGpXWhqm4iSUu1CUxB1V4cDOhjd1F53xoU_scxBsixij3sM47Nrh14F47AzaJ1HMyjbu38O_QDjiIDa</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Fahrenthold, E.P.</creator><creator>Koo, J.C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990701</creationdate><title>Discrete Hamilton's equations for viscous compressible fluid dynamics</title><author>Fahrenthold, E.P. ; Koo, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-71905d05780e4ad9fba4d96c4e850ba5379434598b8b163a65fde72daef72da43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Compressible flows; shock and detonation phenomena</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Shock-wave interactions and shockeffects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahrenthold, E.P.</creatorcontrib><creatorcontrib>Koo, J.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahrenthold, E.P.</au><au>Koo, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Hamilton's equations for viscous compressible fluid dynamics</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>178</volume><issue>1-2</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>Lagrange’s and Hamilton’s equations are used extensively in numerical modeling of rigid body dynamics and continuum solid dynamics problems. The use of energy methods in viscous compressible flow problems has been by contrast rather limited, largely confined to the development of basic balance laws in partial differential equation form. However, finite element interpolation of the modeled flow field allows for the direct application of the discrete form of Hamilton’s equations to viscous compressible fluid dynamics in Eulerian frames. The resulting model is a true energy formulation, developed without reference to the partial differential balance equations which underlie conventional finite difference, weighted residual finite element, and finite volume methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(99)00100-0</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 1999-07, Vol.178 (1-2), p.1-22
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_26923631
source Elsevier ScienceDirect Journals Complete
subjects Compressible flows
shock and detonation phenomena
Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
Shock-wave interactions and shock effects
Shock-wave interactions and shockeffects
title Discrete Hamilton's equations for viscous compressible fluid dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Hamilton's%20equations%20for%20viscous%20compressible%20fluid%20dynamics&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Fahrenthold,%20E.P.&rft.date=1999-07-01&rft.volume=178&rft.issue=1-2&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(99)00100-0&rft_dat=%3Cproquest_cross%3E26923631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26923631&rft_id=info:pmid/&rft_els_id=S0045782599001000&rfr_iscdi=true