ECHS1 deficiency and its biochemical and clinical phenotype

ECHS1 gene encodes a mitochondrial enzyme, short‐chain enoyl‐CoA hydratase (SCEH). SCEH is involved in fatty acid oxidation ([Sharpe and McKenzie (2018); Mitochondrial fatty acid oxidation disorders associated with short‐chain enoyl‐CoA hydratase (ECHS1) deficiency, 7: 46]) and valine catabolism ([F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of medical genetics. Part A 2022-10, Vol.188 (10), p.2908-2919
Hauptverfasser: Ozlu, Can, Chelliah, Priya, Dahshi, Hamza, Horton, Daniel, Edgar, Veronica B., Messahel, Souad, Kayani, Saima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2919
container_issue 10
container_start_page 2908
container_title American journal of medical genetics. Part A
container_volume 188
creator Ozlu, Can
Chelliah, Priya
Dahshi, Hamza
Horton, Daniel
Edgar, Veronica B.
Messahel, Souad
Kayani, Saima
description ECHS1 gene encodes a mitochondrial enzyme, short‐chain enoyl‐CoA hydratase (SCEH). SCEH is involved in fatty acid oxidation ([Sharpe and McKenzie (2018); Mitochondrial fatty acid oxidation disorders associated with short‐chain enoyl‐CoA hydratase (ECHS1) deficiency, 7: 46]) and valine catabolism ([Fong and Schulz (1977); Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues, 252: 542–547]; [Wanders et al. (2012); Enzymology of the branched‐chain amino acid oxidation disorders: The valine pathway, 35: 5–12]), and the dysfunction of SCEH leads to a severe Leigh or Leigh‐like Syndrome phenotype in patients ([Haack et al. (2015); Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement, 2: 492–509]; [Peters et al. (2014); ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism, 137: 2903–2908]; [Sakai et al. (2015); ECHS1 mutations cause combined respiratory chain deficiency resulting in Leigh syndrome, 36: 232–239]; [Tetreault et al. (2015); Whole‐exome sequencing identifies novel ECHS1 mutations in Leigh, 134: 981–991]). This study aims to further describe the ECHS1 deficiency phenotype using medical history questionnaires and standardized tools assessing quality of life and adaptive skills. Our findings in this largest sample of ECHS1 patients in literature to date (n = 13) illustrate a severely disabling condition causing severe developmental delays (n = 11), regression (n = 10), dystonia/hypotonia and movement disorders (n = 13), commonly with symptom onset in infancy (n = 10), classical MRI findings involving the basal ganglia (n = 11), and variability in biochemical profile. Congruent with the medical history, our patients had significantly low composite and domain scores on Vineland Adaptive Behavior Scales, Third Edition. We believe there is an increasing need for better understanding of ECHS1 deficiency with an aim to support the development of transformative genetic‐based therapies, driven by the unmet need for therapies for patients with this genetic disease.
doi_str_mv 10.1002/ajmg.a.62895
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2692076262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692076262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3645-f94b9f4a3c33bd37d929bcc43e1587c0ce3ab60bacb3091722761579943a676a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EolDYmFEkFgZabF9sx2KqqtKCihiA2XIch7rKF3EjlH9P2pQODEw-n56eTg-hK4LHBGN6r9f551iPOY0kO0JnhDE6CiOA48NM2QCde7_GGDAT_BQNgEWME4jO0MNsungjQWJTZ5wtTBvoIgncxgexK83K5s7obLczmSt2n2pli3LTVvYCnaQ68_Zy_w7Rx-PsfboYLV_nT9PJcmSAh2yUyjCWaajBAMQJiERSGRsTgiUsEgYbCzrmONYmBiyJoFRwwoSUIWguuIYhuu29VV1-NdZvVO68sVmmC1s2XlEuKRacctqhN3_QddnURXedooIAARayqKPuesrUpfe1TVVVu1zXrSJYbaOqbVSl1S5qh1_vpU2c2-QA_1bsgLAHvl1m239lavL8Mp_03h9_goDH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713135458</pqid></control><display><type>article</type><title>ECHS1 deficiency and its biochemical and clinical phenotype</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ozlu, Can ; Chelliah, Priya ; Dahshi, Hamza ; Horton, Daniel ; Edgar, Veronica B. ; Messahel, Souad ; Kayani, Saima</creator><creatorcontrib>Ozlu, Can ; Chelliah, Priya ; Dahshi, Hamza ; Horton, Daniel ; Edgar, Veronica B. ; Messahel, Souad ; Kayani, Saima</creatorcontrib><description>ECHS1 gene encodes a mitochondrial enzyme, short‐chain enoyl‐CoA hydratase (SCEH). SCEH is involved in fatty acid oxidation ([Sharpe and McKenzie (2018); Mitochondrial fatty acid oxidation disorders associated with short‐chain enoyl‐CoA hydratase (ECHS1) deficiency, 7: 46]) and valine catabolism ([Fong and Schulz (1977); Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues, 252: 542–547]; [Wanders et al. (2012); Enzymology of the branched‐chain amino acid oxidation disorders: The valine pathway, 35: 5–12]), and the dysfunction of SCEH leads to a severe Leigh or Leigh‐like Syndrome phenotype in patients ([Haack et al. (2015); Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement, 2: 492–509]; [Peters et al. (2014); ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism, 137: 2903–2908]; [Sakai et al. (2015); ECHS1 mutations cause combined respiratory chain deficiency resulting in Leigh syndrome, 36: 232–239]; [Tetreault et al. (2015); Whole‐exome sequencing identifies novel ECHS1 mutations in Leigh, 134: 981–991]). This study aims to further describe the ECHS1 deficiency phenotype using medical history questionnaires and standardized tools assessing quality of life and adaptive skills. Our findings in this largest sample of ECHS1 patients in literature to date (n = 13) illustrate a severely disabling condition causing severe developmental delays (n = 11), regression (n = 10), dystonia/hypotonia and movement disorders (n = 13), commonly with symptom onset in infancy (n = 10), classical MRI findings involving the basal ganglia (n = 11), and variability in biochemical profile. Congruent with the medical history, our patients had significantly low composite and domain scores on Vineland Adaptive Behavior Scales, Third Edition. We believe there is an increasing need for better understanding of ECHS1 deficiency with an aim to support the development of transformative genetic‐based therapies, driven by the unmet need for therapies for patients with this genetic disease.</description><identifier>ISSN: 1552-4825</identifier><identifier>EISSN: 1552-4833</identifier><identifier>DOI: 10.1002/ajmg.a.62895</identifier><identifier>PMID: 35856138</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Amino acids ; Animals ; Basal ganglia ; Cardiomyopathies ; Coenzyme A ; Dystonia ; ECHS1 ; Electron transport ; Encephalopathy ; Enoyl-CoA Hydratase ; Fatty Acids ; Genetic disorders ; Genotype &amp; phenotype ; Guinea Pigs ; Inborn errors of metabolism ; Leigh Disease - genetics ; Leigh syndrome ; Leigh‐like syndrome ; Lipid Metabolism, Inborn Errors ; metabolic encephalopathy ; Metabolism ; Mitochondria ; Mitochondrial Myopathies ; Mitochondrial Trifunctional Protein - deficiency ; Movement disorders ; Mutation ; Nervous System Diseases ; Oxidation ; Patients ; Phenotype ; Phenotypes ; Quality of Life ; Rhabdomyolysis ; Valine ; Valine - metabolism</subject><ispartof>American journal of medical genetics. Part A, 2022-10, Vol.188 (10), p.2908-2919</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3645-f94b9f4a3c33bd37d929bcc43e1587c0ce3ab60bacb3091722761579943a676a3</citedby><cites>FETCH-LOGICAL-c3645-f94b9f4a3c33bd37d929bcc43e1587c0ce3ab60bacb3091722761579943a676a3</cites><orcidid>0000-0002-3643-1422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajmg.a.62895$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajmg.a.62895$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35856138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozlu, Can</creatorcontrib><creatorcontrib>Chelliah, Priya</creatorcontrib><creatorcontrib>Dahshi, Hamza</creatorcontrib><creatorcontrib>Horton, Daniel</creatorcontrib><creatorcontrib>Edgar, Veronica B.</creatorcontrib><creatorcontrib>Messahel, Souad</creatorcontrib><creatorcontrib>Kayani, Saima</creatorcontrib><title>ECHS1 deficiency and its biochemical and clinical phenotype</title><title>American journal of medical genetics. Part A</title><addtitle>Am J Med Genet A</addtitle><description>ECHS1 gene encodes a mitochondrial enzyme, short‐chain enoyl‐CoA hydratase (SCEH). SCEH is involved in fatty acid oxidation ([Sharpe and McKenzie (2018); Mitochondrial fatty acid oxidation disorders associated with short‐chain enoyl‐CoA hydratase (ECHS1) deficiency, 7: 46]) and valine catabolism ([Fong and Schulz (1977); Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues, 252: 542–547]; [Wanders et al. (2012); Enzymology of the branched‐chain amino acid oxidation disorders: The valine pathway, 35: 5–12]), and the dysfunction of SCEH leads to a severe Leigh or Leigh‐like Syndrome phenotype in patients ([Haack et al. (2015); Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement, 2: 492–509]; [Peters et al. (2014); ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism, 137: 2903–2908]; [Sakai et al. (2015); ECHS1 mutations cause combined respiratory chain deficiency resulting in Leigh syndrome, 36: 232–239]; [Tetreault et al. (2015); Whole‐exome sequencing identifies novel ECHS1 mutations in Leigh, 134: 981–991]). This study aims to further describe the ECHS1 deficiency phenotype using medical history questionnaires and standardized tools assessing quality of life and adaptive skills. Our findings in this largest sample of ECHS1 patients in literature to date (n = 13) illustrate a severely disabling condition causing severe developmental delays (n = 11), regression (n = 10), dystonia/hypotonia and movement disorders (n = 13), commonly with symptom onset in infancy (n = 10), classical MRI findings involving the basal ganglia (n = 11), and variability in biochemical profile. Congruent with the medical history, our patients had significantly low composite and domain scores on Vineland Adaptive Behavior Scales, Third Edition. We believe there is an increasing need for better understanding of ECHS1 deficiency with an aim to support the development of transformative genetic‐based therapies, driven by the unmet need for therapies for patients with this genetic disease.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Basal ganglia</subject><subject>Cardiomyopathies</subject><subject>Coenzyme A</subject><subject>Dystonia</subject><subject>ECHS1</subject><subject>Electron transport</subject><subject>Encephalopathy</subject><subject>Enoyl-CoA Hydratase</subject><subject>Fatty Acids</subject><subject>Genetic disorders</subject><subject>Genotype &amp; phenotype</subject><subject>Guinea Pigs</subject><subject>Inborn errors of metabolism</subject><subject>Leigh Disease - genetics</subject><subject>Leigh syndrome</subject><subject>Leigh‐like syndrome</subject><subject>Lipid Metabolism, Inborn Errors</subject><subject>metabolic encephalopathy</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondrial Myopathies</subject><subject>Mitochondrial Trifunctional Protein - deficiency</subject><subject>Movement disorders</subject><subject>Mutation</subject><subject>Nervous System Diseases</subject><subject>Oxidation</subject><subject>Patients</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Quality of Life</subject><subject>Rhabdomyolysis</subject><subject>Valine</subject><subject>Valine - metabolism</subject><issn>1552-4825</issn><issn>1552-4833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQQC0EolDYmFEkFgZabF9sx2KqqtKCihiA2XIch7rKF3EjlH9P2pQODEw-n56eTg-hK4LHBGN6r9f551iPOY0kO0JnhDE6CiOA48NM2QCde7_GGDAT_BQNgEWME4jO0MNsungjQWJTZ5wtTBvoIgncxgexK83K5s7obLczmSt2n2pli3LTVvYCnaQ68_Zy_w7Rx-PsfboYLV_nT9PJcmSAh2yUyjCWaajBAMQJiERSGRsTgiUsEgYbCzrmONYmBiyJoFRwwoSUIWguuIYhuu29VV1-NdZvVO68sVmmC1s2XlEuKRacctqhN3_QddnURXedooIAARayqKPuesrUpfe1TVVVu1zXrSJYbaOqbVSl1S5qh1_vpU2c2-QA_1bsgLAHvl1m239lavL8Mp_03h9_goDH</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Ozlu, Can</creator><creator>Chelliah, Priya</creator><creator>Dahshi, Hamza</creator><creator>Horton, Daniel</creator><creator>Edgar, Veronica B.</creator><creator>Messahel, Souad</creator><creator>Kayani, Saima</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3643-1422</orcidid></search><sort><creationdate>202210</creationdate><title>ECHS1 deficiency and its biochemical and clinical phenotype</title><author>Ozlu, Can ; Chelliah, Priya ; Dahshi, Hamza ; Horton, Daniel ; Edgar, Veronica B. ; Messahel, Souad ; Kayani, Saima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3645-f94b9f4a3c33bd37d929bcc43e1587c0ce3ab60bacb3091722761579943a676a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Basal ganglia</topic><topic>Cardiomyopathies</topic><topic>Coenzyme A</topic><topic>Dystonia</topic><topic>ECHS1</topic><topic>Electron transport</topic><topic>Encephalopathy</topic><topic>Enoyl-CoA Hydratase</topic><topic>Fatty Acids</topic><topic>Genetic disorders</topic><topic>Genotype &amp; phenotype</topic><topic>Guinea Pigs</topic><topic>Inborn errors of metabolism</topic><topic>Leigh Disease - genetics</topic><topic>Leigh syndrome</topic><topic>Leigh‐like syndrome</topic><topic>Lipid Metabolism, Inborn Errors</topic><topic>metabolic encephalopathy</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondrial Myopathies</topic><topic>Mitochondrial Trifunctional Protein - deficiency</topic><topic>Movement disorders</topic><topic>Mutation</topic><topic>Nervous System Diseases</topic><topic>Oxidation</topic><topic>Patients</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Quality of Life</topic><topic>Rhabdomyolysis</topic><topic>Valine</topic><topic>Valine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozlu, Can</creatorcontrib><creatorcontrib>Chelliah, Priya</creatorcontrib><creatorcontrib>Dahshi, Hamza</creatorcontrib><creatorcontrib>Horton, Daniel</creatorcontrib><creatorcontrib>Edgar, Veronica B.</creatorcontrib><creatorcontrib>Messahel, Souad</creatorcontrib><creatorcontrib>Kayani, Saima</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of medical genetics. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozlu, Can</au><au>Chelliah, Priya</au><au>Dahshi, Hamza</au><au>Horton, Daniel</au><au>Edgar, Veronica B.</au><au>Messahel, Souad</au><au>Kayani, Saima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ECHS1 deficiency and its biochemical and clinical phenotype</atitle><jtitle>American journal of medical genetics. Part A</jtitle><addtitle>Am J Med Genet A</addtitle><date>2022-10</date><risdate>2022</risdate><volume>188</volume><issue>10</issue><spage>2908</spage><epage>2919</epage><pages>2908-2919</pages><issn>1552-4825</issn><eissn>1552-4833</eissn><abstract>ECHS1 gene encodes a mitochondrial enzyme, short‐chain enoyl‐CoA hydratase (SCEH). SCEH is involved in fatty acid oxidation ([Sharpe and McKenzie (2018); Mitochondrial fatty acid oxidation disorders associated with short‐chain enoyl‐CoA hydratase (ECHS1) deficiency, 7: 46]) and valine catabolism ([Fong and Schulz (1977); Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues, 252: 542–547]; [Wanders et al. (2012); Enzymology of the branched‐chain amino acid oxidation disorders: The valine pathway, 35: 5–12]), and the dysfunction of SCEH leads to a severe Leigh or Leigh‐like Syndrome phenotype in patients ([Haack et al. (2015); Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement, 2: 492–509]; [Peters et al. (2014); ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism, 137: 2903–2908]; [Sakai et al. (2015); ECHS1 mutations cause combined respiratory chain deficiency resulting in Leigh syndrome, 36: 232–239]; [Tetreault et al. (2015); Whole‐exome sequencing identifies novel ECHS1 mutations in Leigh, 134: 981–991]). This study aims to further describe the ECHS1 deficiency phenotype using medical history questionnaires and standardized tools assessing quality of life and adaptive skills. Our findings in this largest sample of ECHS1 patients in literature to date (n = 13) illustrate a severely disabling condition causing severe developmental delays (n = 11), regression (n = 10), dystonia/hypotonia and movement disorders (n = 13), commonly with symptom onset in infancy (n = 10), classical MRI findings involving the basal ganglia (n = 11), and variability in biochemical profile. Congruent with the medical history, our patients had significantly low composite and domain scores on Vineland Adaptive Behavior Scales, Third Edition. We believe there is an increasing need for better understanding of ECHS1 deficiency with an aim to support the development of transformative genetic‐based therapies, driven by the unmet need for therapies for patients with this genetic disease.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35856138</pmid><doi>10.1002/ajmg.a.62895</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3643-1422</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4825
ispartof American journal of medical genetics. Part A, 2022-10, Vol.188 (10), p.2908-2919
issn 1552-4825
1552-4833
language eng
recordid cdi_proquest_miscellaneous_2692076262
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amino acids
Animals
Basal ganglia
Cardiomyopathies
Coenzyme A
Dystonia
ECHS1
Electron transport
Encephalopathy
Enoyl-CoA Hydratase
Fatty Acids
Genetic disorders
Genotype & phenotype
Guinea Pigs
Inborn errors of metabolism
Leigh Disease - genetics
Leigh syndrome
Leigh‐like syndrome
Lipid Metabolism, Inborn Errors
metabolic encephalopathy
Metabolism
Mitochondria
Mitochondrial Myopathies
Mitochondrial Trifunctional Protein - deficiency
Movement disorders
Mutation
Nervous System Diseases
Oxidation
Patients
Phenotype
Phenotypes
Quality of Life
Rhabdomyolysis
Valine
Valine - metabolism
title ECHS1 deficiency and its biochemical and clinical phenotype
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ECHS1%20deficiency%20and%20its%20biochemical%20and%20clinical%20phenotype&rft.jtitle=American%20journal%20of%20medical%20genetics.%20Part%20A&rft.au=Ozlu,%20Can&rft.date=2022-10&rft.volume=188&rft.issue=10&rft.spage=2908&rft.epage=2919&rft.pages=2908-2919&rft.issn=1552-4825&rft.eissn=1552-4833&rft_id=info:doi/10.1002/ajmg.a.62895&rft_dat=%3Cproquest_cross%3E2692076262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713135458&rft_id=info:pmid/35856138&rfr_iscdi=true