ECHS1 deficiency and its biochemical and clinical phenotype
ECHS1 gene encodes a mitochondrial enzyme, short‐chain enoyl‐CoA hydratase (SCEH). SCEH is involved in fatty acid oxidation ([Sharpe and McKenzie (2018); Mitochondrial fatty acid oxidation disorders associated with short‐chain enoyl‐CoA hydratase (ECHS1) deficiency, 7: 46]) and valine catabolism ([F...
Gespeichert in:
Veröffentlicht in: | American journal of medical genetics. Part A 2022-10, Vol.188 (10), p.2908-2919 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2919 |
---|---|
container_issue | 10 |
container_start_page | 2908 |
container_title | American journal of medical genetics. Part A |
container_volume | 188 |
creator | Ozlu, Can Chelliah, Priya Dahshi, Hamza Horton, Daniel Edgar, Veronica B. Messahel, Souad Kayani, Saima |
description | ECHS1 gene encodes a mitochondrial enzyme, short‐chain enoyl‐CoA hydratase (SCEH). SCEH is involved in fatty acid oxidation ([Sharpe and McKenzie (2018); Mitochondrial fatty acid oxidation disorders associated with short‐chain enoyl‐CoA hydratase (ECHS1) deficiency, 7: 46]) and valine catabolism ([Fong and Schulz (1977); Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues, 252: 542–547]; [Wanders et al. (2012); Enzymology of the branched‐chain amino acid oxidation disorders: The valine pathway, 35: 5–12]), and the dysfunction of SCEH leads to a severe Leigh or Leigh‐like Syndrome phenotype in patients ([Haack et al. (2015); Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement, 2: 492–509]; [Peters et al. (2014); ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism, 137: 2903–2908]; [Sakai et al. (2015); ECHS1 mutations cause combined respiratory chain deficiency resulting in Leigh syndrome, 36: 232–239]; [Tetreault et al. (2015); Whole‐exome sequencing identifies novel ECHS1 mutations in Leigh, 134: 981–991]). This study aims to further describe the ECHS1 deficiency phenotype using medical history questionnaires and standardized tools assessing quality of life and adaptive skills. Our findings in this largest sample of ECHS1 patients in literature to date (n = 13) illustrate a severely disabling condition causing severe developmental delays (n = 11), regression (n = 10), dystonia/hypotonia and movement disorders (n = 13), commonly with symptom onset in infancy (n = 10), classical MRI findings involving the basal ganglia (n = 11), and variability in biochemical profile. Congruent with the medical history, our patients had significantly low composite and domain scores on Vineland Adaptive Behavior Scales, Third Edition. We believe there is an increasing need for better understanding of ECHS1 deficiency with an aim to support the development of transformative genetic‐based therapies, driven by the unmet need for therapies for patients with this genetic disease. |
doi_str_mv | 10.1002/ajmg.a.62895 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2692076262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692076262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3645-f94b9f4a3c33bd37d929bcc43e1587c0ce3ab60bacb3091722761579943a676a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EolDYmFEkFgZabF9sx2KqqtKCihiA2XIch7rKF3EjlH9P2pQODEw-n56eTg-hK4LHBGN6r9f551iPOY0kO0JnhDE6CiOA48NM2QCde7_GGDAT_BQNgEWME4jO0MNsungjQWJTZ5wtTBvoIgncxgexK83K5s7obLczmSt2n2pli3LTVvYCnaQ68_Zy_w7Rx-PsfboYLV_nT9PJcmSAh2yUyjCWaajBAMQJiERSGRsTgiUsEgYbCzrmONYmBiyJoFRwwoSUIWguuIYhuu29VV1-NdZvVO68sVmmC1s2XlEuKRacctqhN3_QddnURXedooIAARayqKPuesrUpfe1TVVVu1zXrSJYbaOqbVSl1S5qh1_vpU2c2-QA_1bsgLAHvl1m239lavL8Mp_03h9_goDH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713135458</pqid></control><display><type>article</type><title>ECHS1 deficiency and its biochemical and clinical phenotype</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ozlu, Can ; Chelliah, Priya ; Dahshi, Hamza ; Horton, Daniel ; Edgar, Veronica B. ; Messahel, Souad ; Kayani, Saima</creator><creatorcontrib>Ozlu, Can ; Chelliah, Priya ; Dahshi, Hamza ; Horton, Daniel ; Edgar, Veronica B. ; Messahel, Souad ; Kayani, Saima</creatorcontrib><description>ECHS1 gene encodes a mitochondrial enzyme, short‐chain enoyl‐CoA hydratase (SCEH). SCEH is involved in fatty acid oxidation ([Sharpe and McKenzie (2018); Mitochondrial fatty acid oxidation disorders associated with short‐chain enoyl‐CoA hydratase (ECHS1) deficiency, 7: 46]) and valine catabolism ([Fong and Schulz (1977); Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues, 252: 542–547]; [Wanders et al. (2012); Enzymology of the branched‐chain amino acid oxidation disorders: The valine pathway, 35: 5–12]), and the dysfunction of SCEH leads to a severe Leigh or Leigh‐like Syndrome phenotype in patients ([Haack et al. (2015); Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement, 2: 492–509]; [Peters et al. (2014); ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism, 137: 2903–2908]; [Sakai et al. (2015); ECHS1 mutations cause combined respiratory chain deficiency resulting in Leigh syndrome, 36: 232–239]; [Tetreault et al. (2015); Whole‐exome sequencing identifies novel ECHS1 mutations in Leigh, 134: 981–991]). This study aims to further describe the ECHS1 deficiency phenotype using medical history questionnaires and standardized tools assessing quality of life and adaptive skills. Our findings in this largest sample of ECHS1 patients in literature to date (n = 13) illustrate a severely disabling condition causing severe developmental delays (n = 11), regression (n = 10), dystonia/hypotonia and movement disorders (n = 13), commonly with symptom onset in infancy (n = 10), classical MRI findings involving the basal ganglia (n = 11), and variability in biochemical profile. Congruent with the medical history, our patients had significantly low composite and domain scores on Vineland Adaptive Behavior Scales, Third Edition. We believe there is an increasing need for better understanding of ECHS1 deficiency with an aim to support the development of transformative genetic‐based therapies, driven by the unmet need for therapies for patients with this genetic disease.</description><identifier>ISSN: 1552-4825</identifier><identifier>EISSN: 1552-4833</identifier><identifier>DOI: 10.1002/ajmg.a.62895</identifier><identifier>PMID: 35856138</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Amino acids ; Animals ; Basal ganglia ; Cardiomyopathies ; Coenzyme A ; Dystonia ; ECHS1 ; Electron transport ; Encephalopathy ; Enoyl-CoA Hydratase ; Fatty Acids ; Genetic disorders ; Genotype & phenotype ; Guinea Pigs ; Inborn errors of metabolism ; Leigh Disease - genetics ; Leigh syndrome ; Leigh‐like syndrome ; Lipid Metabolism, Inborn Errors ; metabolic encephalopathy ; Metabolism ; Mitochondria ; Mitochondrial Myopathies ; Mitochondrial Trifunctional Protein - deficiency ; Movement disorders ; Mutation ; Nervous System Diseases ; Oxidation ; Patients ; Phenotype ; Phenotypes ; Quality of Life ; Rhabdomyolysis ; Valine ; Valine - metabolism</subject><ispartof>American journal of medical genetics. Part A, 2022-10, Vol.188 (10), p.2908-2919</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3645-f94b9f4a3c33bd37d929bcc43e1587c0ce3ab60bacb3091722761579943a676a3</citedby><cites>FETCH-LOGICAL-c3645-f94b9f4a3c33bd37d929bcc43e1587c0ce3ab60bacb3091722761579943a676a3</cites><orcidid>0000-0002-3643-1422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajmg.a.62895$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajmg.a.62895$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35856138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozlu, Can</creatorcontrib><creatorcontrib>Chelliah, Priya</creatorcontrib><creatorcontrib>Dahshi, Hamza</creatorcontrib><creatorcontrib>Horton, Daniel</creatorcontrib><creatorcontrib>Edgar, Veronica B.</creatorcontrib><creatorcontrib>Messahel, Souad</creatorcontrib><creatorcontrib>Kayani, Saima</creatorcontrib><title>ECHS1 deficiency and its biochemical and clinical phenotype</title><title>American journal of medical genetics. Part A</title><addtitle>Am J Med Genet A</addtitle><description>ECHS1 gene encodes a mitochondrial enzyme, short‐chain enoyl‐CoA hydratase (SCEH). SCEH is involved in fatty acid oxidation ([Sharpe and McKenzie (2018); Mitochondrial fatty acid oxidation disorders associated with short‐chain enoyl‐CoA hydratase (ECHS1) deficiency, 7: 46]) and valine catabolism ([Fong and Schulz (1977); Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues, 252: 542–547]; [Wanders et al. (2012); Enzymology of the branched‐chain amino acid oxidation disorders: The valine pathway, 35: 5–12]), and the dysfunction of SCEH leads to a severe Leigh or Leigh‐like Syndrome phenotype in patients ([Haack et al. (2015); Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement, 2: 492–509]; [Peters et al. (2014); ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism, 137: 2903–2908]; [Sakai et al. (2015); ECHS1 mutations cause combined respiratory chain deficiency resulting in Leigh syndrome, 36: 232–239]; [Tetreault et al. (2015); Whole‐exome sequencing identifies novel ECHS1 mutations in Leigh, 134: 981–991]). This study aims to further describe the ECHS1 deficiency phenotype using medical history questionnaires and standardized tools assessing quality of life and adaptive skills. Our findings in this largest sample of ECHS1 patients in literature to date (n = 13) illustrate a severely disabling condition causing severe developmental delays (n = 11), regression (n = 10), dystonia/hypotonia and movement disorders (n = 13), commonly with symptom onset in infancy (n = 10), classical MRI findings involving the basal ganglia (n = 11), and variability in biochemical profile. Congruent with the medical history, our patients had significantly low composite and domain scores on Vineland Adaptive Behavior Scales, Third Edition. We believe there is an increasing need for better understanding of ECHS1 deficiency with an aim to support the development of transformative genetic‐based therapies, driven by the unmet need for therapies for patients with this genetic disease.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Basal ganglia</subject><subject>Cardiomyopathies</subject><subject>Coenzyme A</subject><subject>Dystonia</subject><subject>ECHS1</subject><subject>Electron transport</subject><subject>Encephalopathy</subject><subject>Enoyl-CoA Hydratase</subject><subject>Fatty Acids</subject><subject>Genetic disorders</subject><subject>Genotype & phenotype</subject><subject>Guinea Pigs</subject><subject>Inborn errors of metabolism</subject><subject>Leigh Disease - genetics</subject><subject>Leigh syndrome</subject><subject>Leigh‐like syndrome</subject><subject>Lipid Metabolism, Inborn Errors</subject><subject>metabolic encephalopathy</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondrial Myopathies</subject><subject>Mitochondrial Trifunctional Protein - deficiency</subject><subject>Movement disorders</subject><subject>Mutation</subject><subject>Nervous System Diseases</subject><subject>Oxidation</subject><subject>Patients</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Quality of Life</subject><subject>Rhabdomyolysis</subject><subject>Valine</subject><subject>Valine - metabolism</subject><issn>1552-4825</issn><issn>1552-4833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQQC0EolDYmFEkFgZabF9sx2KqqtKCihiA2XIch7rKF3EjlH9P2pQODEw-n56eTg-hK4LHBGN6r9f551iPOY0kO0JnhDE6CiOA48NM2QCde7_GGDAT_BQNgEWME4jO0MNsungjQWJTZ5wtTBvoIgncxgexK83K5s7obLczmSt2n2pli3LTVvYCnaQ68_Zy_w7Rx-PsfboYLV_nT9PJcmSAh2yUyjCWaajBAMQJiERSGRsTgiUsEgYbCzrmONYmBiyJoFRwwoSUIWguuIYhuu29VV1-NdZvVO68sVmmC1s2XlEuKRacctqhN3_QddnURXedooIAARayqKPuesrUpfe1TVVVu1zXrSJYbaOqbVSl1S5qh1_vpU2c2-QA_1bsgLAHvl1m239lavL8Mp_03h9_goDH</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Ozlu, Can</creator><creator>Chelliah, Priya</creator><creator>Dahshi, Hamza</creator><creator>Horton, Daniel</creator><creator>Edgar, Veronica B.</creator><creator>Messahel, Souad</creator><creator>Kayani, Saima</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3643-1422</orcidid></search><sort><creationdate>202210</creationdate><title>ECHS1 deficiency and its biochemical and clinical phenotype</title><author>Ozlu, Can ; Chelliah, Priya ; Dahshi, Hamza ; Horton, Daniel ; Edgar, Veronica B. ; Messahel, Souad ; Kayani, Saima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3645-f94b9f4a3c33bd37d929bcc43e1587c0ce3ab60bacb3091722761579943a676a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Basal ganglia</topic><topic>Cardiomyopathies</topic><topic>Coenzyme A</topic><topic>Dystonia</topic><topic>ECHS1</topic><topic>Electron transport</topic><topic>Encephalopathy</topic><topic>Enoyl-CoA Hydratase</topic><topic>Fatty Acids</topic><topic>Genetic disorders</topic><topic>Genotype & phenotype</topic><topic>Guinea Pigs</topic><topic>Inborn errors of metabolism</topic><topic>Leigh Disease - genetics</topic><topic>Leigh syndrome</topic><topic>Leigh‐like syndrome</topic><topic>Lipid Metabolism, Inborn Errors</topic><topic>metabolic encephalopathy</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondrial Myopathies</topic><topic>Mitochondrial Trifunctional Protein - deficiency</topic><topic>Movement disorders</topic><topic>Mutation</topic><topic>Nervous System Diseases</topic><topic>Oxidation</topic><topic>Patients</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Quality of Life</topic><topic>Rhabdomyolysis</topic><topic>Valine</topic><topic>Valine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozlu, Can</creatorcontrib><creatorcontrib>Chelliah, Priya</creatorcontrib><creatorcontrib>Dahshi, Hamza</creatorcontrib><creatorcontrib>Horton, Daniel</creatorcontrib><creatorcontrib>Edgar, Veronica B.</creatorcontrib><creatorcontrib>Messahel, Souad</creatorcontrib><creatorcontrib>Kayani, Saima</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of medical genetics. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozlu, Can</au><au>Chelliah, Priya</au><au>Dahshi, Hamza</au><au>Horton, Daniel</au><au>Edgar, Veronica B.</au><au>Messahel, Souad</au><au>Kayani, Saima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ECHS1 deficiency and its biochemical and clinical phenotype</atitle><jtitle>American journal of medical genetics. Part A</jtitle><addtitle>Am J Med Genet A</addtitle><date>2022-10</date><risdate>2022</risdate><volume>188</volume><issue>10</issue><spage>2908</spage><epage>2919</epage><pages>2908-2919</pages><issn>1552-4825</issn><eissn>1552-4833</eissn><abstract>ECHS1 gene encodes a mitochondrial enzyme, short‐chain enoyl‐CoA hydratase (SCEH). SCEH is involved in fatty acid oxidation ([Sharpe and McKenzie (2018); Mitochondrial fatty acid oxidation disorders associated with short‐chain enoyl‐CoA hydratase (ECHS1) deficiency, 7: 46]) and valine catabolism ([Fong and Schulz (1977); Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues, 252: 542–547]; [Wanders et al. (2012); Enzymology of the branched‐chain amino acid oxidation disorders: The valine pathway, 35: 5–12]), and the dysfunction of SCEH leads to a severe Leigh or Leigh‐like Syndrome phenotype in patients ([Haack et al. (2015); Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement, 2: 492–509]; [Peters et al. (2014); ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism, 137: 2903–2908]; [Sakai et al. (2015); ECHS1 mutations cause combined respiratory chain deficiency resulting in Leigh syndrome, 36: 232–239]; [Tetreault et al. (2015); Whole‐exome sequencing identifies novel ECHS1 mutations in Leigh, 134: 981–991]). This study aims to further describe the ECHS1 deficiency phenotype using medical history questionnaires and standardized tools assessing quality of life and adaptive skills. Our findings in this largest sample of ECHS1 patients in literature to date (n = 13) illustrate a severely disabling condition causing severe developmental delays (n = 11), regression (n = 10), dystonia/hypotonia and movement disorders (n = 13), commonly with symptom onset in infancy (n = 10), classical MRI findings involving the basal ganglia (n = 11), and variability in biochemical profile. Congruent with the medical history, our patients had significantly low composite and domain scores on Vineland Adaptive Behavior Scales, Third Edition. We believe there is an increasing need for better understanding of ECHS1 deficiency with an aim to support the development of transformative genetic‐based therapies, driven by the unmet need for therapies for patients with this genetic disease.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>35856138</pmid><doi>10.1002/ajmg.a.62895</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3643-1422</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4825 |
ispartof | American journal of medical genetics. Part A, 2022-10, Vol.188 (10), p.2908-2919 |
issn | 1552-4825 1552-4833 |
language | eng |
recordid | cdi_proquest_miscellaneous_2692076262 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amino acids Animals Basal ganglia Cardiomyopathies Coenzyme A Dystonia ECHS1 Electron transport Encephalopathy Enoyl-CoA Hydratase Fatty Acids Genetic disorders Genotype & phenotype Guinea Pigs Inborn errors of metabolism Leigh Disease - genetics Leigh syndrome Leigh‐like syndrome Lipid Metabolism, Inborn Errors metabolic encephalopathy Metabolism Mitochondria Mitochondrial Myopathies Mitochondrial Trifunctional Protein - deficiency Movement disorders Mutation Nervous System Diseases Oxidation Patients Phenotype Phenotypes Quality of Life Rhabdomyolysis Valine Valine - metabolism |
title | ECHS1 deficiency and its biochemical and clinical phenotype |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ECHS1%20deficiency%20and%20its%20biochemical%20and%20clinical%20phenotype&rft.jtitle=American%20journal%20of%20medical%20genetics.%20Part%20A&rft.au=Ozlu,%20Can&rft.date=2022-10&rft.volume=188&rft.issue=10&rft.spage=2908&rft.epage=2919&rft.pages=2908-2919&rft.issn=1552-4825&rft.eissn=1552-4833&rft_id=info:doi/10.1002/ajmg.a.62895&rft_dat=%3Cproquest_cross%3E2692076262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713135458&rft_id=info:pmid/35856138&rfr_iscdi=true |