Rotational Cooling Effect on the Rate Constant in the CH3F + Ca+ Reaction at Low Collision Energies
The rotational cooling effect on the reaction rate constant of the gas-phase ion–polar-molecule reaction CH3F + Ca+ → CH3 + CaF+ was experimentally studied at low collision energies. Fluoromethane molecules showed higher reactivity as the rotational temperature decreased. The experimental rate const...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2022-08, Vol.126 (30), p.4881-4890 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4890 |
---|---|
container_issue | 30 |
container_start_page | 4881 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 126 |
creator | Okada, Kunihiro Sakimoto, Kazuhiro Schuessler, Hans A. |
description | The rotational cooling effect on the reaction rate constant of the gas-phase ion–polar-molecule reaction CH3F + Ca+ → CH3 + CaF+ was experimentally studied at low collision energies. Fluoromethane molecules showed higher reactivity as the rotational temperature decreased. The experimental rate constants were compared with the capture rate constants which were obtained by the Perturbed Rotational State (PRS) theory assuming the rotational level distribution corresponding to the experimental conditions. The PRS result shows a strong dependence of the capture rate constants on the rotational level distribution in accordance with the experimental findings. However, the PRS capture rate constants deviate from the measurement values as the average collision energy increases especially when the fluoromethane molecules are rotationally cooled far below room temperature. The present paper suggests that the rotational state distribution significantly affects the rate constants of ion–polar-molecule reactions and is one of the important issues to be considered in the study of molecular synthesis in the interstellar medium, where the thermal equilibrium is not necessarily established. |
doi_str_mv | 10.1021/acs.jpca.2c01063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2692073554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692073554</sourcerecordid><originalsourceid>FETCH-LOGICAL-a221t-5dc967becee5077c924630ba949ae347bb1445df2b45f189df91384538a64dfa3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKt3jzkKdWs-dzdHWVorFISi5zCbTeqWmNQmxb9vaj3N8MzLC_MgdE_JnBJGn8Ck-W5vYM4MoaTmF2hCJSOVZFRelp20qpI1V9foJqUdIYRyJibIbGKGPMYAHncx-jFs8cI5azKOAedPizeQbTmFlCFkPJ5ht-JLPMMdzPDGgjkVYMh4HX9K1PsxncAi2MN2tOkWXTnwyd79zyn6WC7eu1W1fnt57Z7XFTBGcyUHo-qmt8ZaSZrGKCZqTnpQQoHloul7KoQcHOuFdLRVg1OUt0LyFmoxOOBT9HDu3R_i99GmrL_GZKz3EGw8Js1qxUjDpRQl-niOFm16F4-H8n_SlOiTS_0Hi0v975L_Ah1rZ28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692073554</pqid></control><display><type>article</type><title>Rotational Cooling Effect on the Rate Constant in the CH3F + Ca+ Reaction at Low Collision Energies</title><source>American Chemical Society Journals</source><creator>Okada, Kunihiro ; Sakimoto, Kazuhiro ; Schuessler, Hans A.</creator><creatorcontrib>Okada, Kunihiro ; Sakimoto, Kazuhiro ; Schuessler, Hans A.</creatorcontrib><description>The rotational cooling effect on the reaction rate constant of the gas-phase ion–polar-molecule reaction CH3F + Ca+ → CH3 + CaF+ was experimentally studied at low collision energies. Fluoromethane molecules showed higher reactivity as the rotational temperature decreased. The experimental rate constants were compared with the capture rate constants which were obtained by the Perturbed Rotational State (PRS) theory assuming the rotational level distribution corresponding to the experimental conditions. The PRS result shows a strong dependence of the capture rate constants on the rotational level distribution in accordance with the experimental findings. However, the PRS capture rate constants deviate from the measurement values as the average collision energy increases especially when the fluoromethane molecules are rotationally cooled far below room temperature. The present paper suggests that the rotational state distribution significantly affects the rate constants of ion–polar-molecule reactions and is one of the important issues to be considered in the study of molecular synthesis in the interstellar medium, where the thermal equilibrium is not necessarily established.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.2c01063</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2022-08, Vol.126 (30), p.4881-4890</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1692-0712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.2c01063$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.2c01063$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Okada, Kunihiro</creatorcontrib><creatorcontrib>Sakimoto, Kazuhiro</creatorcontrib><creatorcontrib>Schuessler, Hans A.</creatorcontrib><title>Rotational Cooling Effect on the Rate Constant in the CH3F + Ca+ Reaction at Low Collision Energies</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The rotational cooling effect on the reaction rate constant of the gas-phase ion–polar-molecule reaction CH3F + Ca+ → CH3 + CaF+ was experimentally studied at low collision energies. Fluoromethane molecules showed higher reactivity as the rotational temperature decreased. The experimental rate constants were compared with the capture rate constants which were obtained by the Perturbed Rotational State (PRS) theory assuming the rotational level distribution corresponding to the experimental conditions. The PRS result shows a strong dependence of the capture rate constants on the rotational level distribution in accordance with the experimental findings. However, the PRS capture rate constants deviate from the measurement values as the average collision energy increases especially when the fluoromethane molecules are rotationally cooled far below room temperature. The present paper suggests that the rotational state distribution significantly affects the rate constants of ion–polar-molecule reactions and is one of the important issues to be considered in the study of molecular synthesis in the interstellar medium, where the thermal equilibrium is not necessarily established.</description><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKt3jzkKdWs-dzdHWVorFISi5zCbTeqWmNQmxb9vaj3N8MzLC_MgdE_JnBJGn8Ck-W5vYM4MoaTmF2hCJSOVZFRelp20qpI1V9foJqUdIYRyJibIbGKGPMYAHncx-jFs8cI5azKOAedPizeQbTmFlCFkPJ5ht-JLPMMdzPDGgjkVYMh4HX9K1PsxncAi2MN2tOkWXTnwyd79zyn6WC7eu1W1fnt57Z7XFTBGcyUHo-qmt8ZaSZrGKCZqTnpQQoHloul7KoQcHOuFdLRVg1OUt0LyFmoxOOBT9HDu3R_i99GmrL_GZKz3EGw8Js1qxUjDpRQl-niOFm16F4-H8n_SlOiTS_0Hi0v975L_Ah1rZ28</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>Okada, Kunihiro</creator><creator>Sakimoto, Kazuhiro</creator><creator>Schuessler, Hans A.</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1692-0712</orcidid></search><sort><creationdate>20220804</creationdate><title>Rotational Cooling Effect on the Rate Constant in the CH3F + Ca+ Reaction at Low Collision Energies</title><author>Okada, Kunihiro ; Sakimoto, Kazuhiro ; Schuessler, Hans A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a221t-5dc967becee5077c924630ba949ae347bb1445df2b45f189df91384538a64dfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Kunihiro</creatorcontrib><creatorcontrib>Sakimoto, Kazuhiro</creatorcontrib><creatorcontrib>Schuessler, Hans A.</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Kunihiro</au><au>Sakimoto, Kazuhiro</au><au>Schuessler, Hans A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotational Cooling Effect on the Rate Constant in the CH3F + Ca+ Reaction at Low Collision Energies</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2022-08-04</date><risdate>2022</risdate><volume>126</volume><issue>30</issue><spage>4881</spage><epage>4890</epage><pages>4881-4890</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The rotational cooling effect on the reaction rate constant of the gas-phase ion–polar-molecule reaction CH3F + Ca+ → CH3 + CaF+ was experimentally studied at low collision energies. Fluoromethane molecules showed higher reactivity as the rotational temperature decreased. The experimental rate constants were compared with the capture rate constants which were obtained by the Perturbed Rotational State (PRS) theory assuming the rotational level distribution corresponding to the experimental conditions. The PRS result shows a strong dependence of the capture rate constants on the rotational level distribution in accordance with the experimental findings. However, the PRS capture rate constants deviate from the measurement values as the average collision energy increases especially when the fluoromethane molecules are rotationally cooled far below room temperature. The present paper suggests that the rotational state distribution significantly affects the rate constants of ion–polar-molecule reactions and is one of the important issues to be considered in the study of molecular synthesis in the interstellar medium, where the thermal equilibrium is not necessarily established.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.2c01063</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1692-0712</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2022-08, Vol.126 (30), p.4881-4890 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_2692073554 |
source | American Chemical Society Journals |
subjects | A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters |
title | Rotational Cooling Effect on the Rate Constant in the CH3F + Ca+ Reaction at Low Collision Energies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotational%20Cooling%20Effect%20on%20the%20Rate%20Constant%20in%20the%20CH3F%20+%20Ca+%20Reaction%20at%20Low%20Collision%20Energies&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Okada,%20Kunihiro&rft.date=2022-08-04&rft.volume=126&rft.issue=30&rft.spage=4881&rft.epage=4890&rft.pages=4881-4890&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.2c01063&rft_dat=%3Cproquest_acs_j%3E2692073554%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692073554&rft_id=info:pmid/&rfr_iscdi=true |