Bridging membrane transport models
Analysis of transport processes in swollen polymer networks bridges two classical models The movement of small molecules (e.g., water, organic solvents, gases) through polymeric membrane materials is critical for a wide range of applications including water desalination and filtration, crude oil ref...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2022-07, Vol.377 (6602), p.152-152 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | 6602 |
container_start_page | 152 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 377 |
creator | Geise, Geoffrey M. |
description | Analysis of transport processes in swollen polymer networks bridges two classical models
The movement of small molecules (e.g., water, organic solvents, gases) through polymeric membrane materials is critical for a wide range of applications including water desalination and filtration, crude oil refining, and some controlled-release devices (
1
–
4
). For decades, researchers have used two classical models to describe fluid passage through membranes: solution diffusion and pore flow (
1
). Although each model is generally accepted to describe certain materials, the mechanism of how solvent passes through materials whose structure falls between the two models, such as swollen polymers, has been debated since the 1960s. On page 186 of this issue, Hegde
et al.
(
5
) present a two-phase fluid-solid model and perturbation analysis to demonstrate that both the solution-diffusion model and the pore-flow model ultimately describe the same driving force for solvent passage in swollen polymers. |
doi_str_mv | 10.1126/science.abn5485 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2692072779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2686242368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-a6e0296955263da16b3ff2aa82012f432c54bb4cde50d2bf002f1f24129ca27a3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqEws0awsKQ9n2MnHqHiS6rEArPlOHaVKomDnQz8e4zaieVuuEev3nsIuaWwphTFJprOjsaudTPysuZnJKMgeSER2DnJAJgoaqj4JbmK8QCQbpJl5O4pdO2-G_f5YIcm6NHmc5px8mHOB9_aPl6TC6f7aG9Oe0W-Xp4_t2_F7uP1ffu4KwxyMRdaWEApJOcoWKupaJhzqHWNQNGVDA0vm6Y0reXQYuMA0FGHJUVpNFaarcjDMXcK_nuxcVZDF43t-1TKL1GhSL9UWFUyoff_0INfwpjaJaoWWCITdaI2R8oEH2OwTk2hG3T4URTUnzN1cqZOztgvN8Rf5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686242368</pqid></control><display><type>article</type><title>Bridging membrane transport models</title><source>Science Online_科学在线</source><creator>Geise, Geoffrey M.</creator><creatorcontrib>Geise, Geoffrey M.</creatorcontrib><description>Analysis of transport processes in swollen polymer networks bridges two classical models
The movement of small molecules (e.g., water, organic solvents, gases) through polymeric membrane materials is critical for a wide range of applications including water desalination and filtration, crude oil refining, and some controlled-release devices (
1
–
4
). For decades, researchers have used two classical models to describe fluid passage through membranes: solution diffusion and pore flow (
1
). Although each model is generally accepted to describe certain materials, the mechanism of how solvent passes through materials whose structure falls between the two models, such as swollen polymers, has been debated since the 1960s. On page 186 of this issue, Hegde
et al.
(
5
) present a two-phase fluid-solid model and perturbation analysis to demonstrate that both the solution-diffusion model and the pore-flow model ultimately describe the same driving force for solvent passage in swollen polymers.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abn5485</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Controlled release ; Crude oil ; Desalination ; Membranes ; Organic solvents ; Perturbation methods ; Petroleum refining ; Polymers ; Solvents ; Water purification</subject><ispartof>Science (American Association for the Advancement of Science), 2022-07, Vol.377 (6602), p.152-152</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-a6e0296955263da16b3ff2aa82012f432c54bb4cde50d2bf002f1f24129ca27a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids></links><search><creatorcontrib>Geise, Geoffrey M.</creatorcontrib><title>Bridging membrane transport models</title><title>Science (American Association for the Advancement of Science)</title><description>Analysis of transport processes in swollen polymer networks bridges two classical models
The movement of small molecules (e.g., water, organic solvents, gases) through polymeric membrane materials is critical for a wide range of applications including water desalination and filtration, crude oil refining, and some controlled-release devices (
1
–
4
). For decades, researchers have used two classical models to describe fluid passage through membranes: solution diffusion and pore flow (
1
). Although each model is generally accepted to describe certain materials, the mechanism of how solvent passes through materials whose structure falls between the two models, such as swollen polymers, has been debated since the 1960s. On page 186 of this issue, Hegde
et al.
(
5
) present a two-phase fluid-solid model and perturbation analysis to demonstrate that both the solution-diffusion model and the pore-flow model ultimately describe the same driving force for solvent passage in swollen polymers.</description><subject>Controlled release</subject><subject>Crude oil</subject><subject>Desalination</subject><subject>Membranes</subject><subject>Organic solvents</subject><subject>Perturbation methods</subject><subject>Petroleum refining</subject><subject>Polymers</subject><subject>Solvents</subject><subject>Water purification</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EEqEws0awsKQ9n2MnHqHiS6rEArPlOHaVKomDnQz8e4zaieVuuEev3nsIuaWwphTFJprOjsaudTPysuZnJKMgeSER2DnJAJgoaqj4JbmK8QCQbpJl5O4pdO2-G_f5YIcm6NHmc5px8mHOB9_aPl6TC6f7aG9Oe0W-Xp4_t2_F7uP1ffu4KwxyMRdaWEApJOcoWKupaJhzqHWNQNGVDA0vm6Y0reXQYuMA0FGHJUVpNFaarcjDMXcK_nuxcVZDF43t-1TKL1GhSL9UWFUyoff_0INfwpjaJaoWWCITdaI2R8oEH2OwTk2hG3T4URTUnzN1cqZOztgvN8Rf5w</recordid><startdate>20220708</startdate><enddate>20220708</enddate><creator>Geise, Geoffrey M.</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20220708</creationdate><title>Bridging membrane transport models</title><author>Geise, Geoffrey M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-a6e0296955263da16b3ff2aa82012f432c54bb4cde50d2bf002f1f24129ca27a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Controlled release</topic><topic>Crude oil</topic><topic>Desalination</topic><topic>Membranes</topic><topic>Organic solvents</topic><topic>Perturbation methods</topic><topic>Petroleum refining</topic><topic>Polymers</topic><topic>Solvents</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geise, Geoffrey M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geise, Geoffrey M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging membrane transport models</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2022-07-08</date><risdate>2022</risdate><volume>377</volume><issue>6602</issue><spage>152</spage><epage>152</epage><pages>152-152</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Analysis of transport processes in swollen polymer networks bridges two classical models
The movement of small molecules (e.g., water, organic solvents, gases) through polymeric membrane materials is critical for a wide range of applications including water desalination and filtration, crude oil refining, and some controlled-release devices (
1
–
4
). For decades, researchers have used two classical models to describe fluid passage through membranes: solution diffusion and pore flow (
1
). Although each model is generally accepted to describe certain materials, the mechanism of how solvent passes through materials whose structure falls between the two models, such as swollen polymers, has been debated since the 1960s. On page 186 of this issue, Hegde
et al.
(
5
) present a two-phase fluid-solid model and perturbation analysis to demonstrate that both the solution-diffusion model and the pore-flow model ultimately describe the same driving force for solvent passage in swollen polymers.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abn5485</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2022-07, Vol.377 (6602), p.152-152 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2692072779 |
source | Science Online_科学在线 |
subjects | Controlled release Crude oil Desalination Membranes Organic solvents Perturbation methods Petroleum refining Polymers Solvents Water purification |
title | Bridging membrane transport models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20membrane%20transport%20models&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Geise,%20Geoffrey%20M.&rft.date=2022-07-08&rft.volume=377&rft.issue=6602&rft.spage=152&rft.epage=152&rft.pages=152-152&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abn5485&rft_dat=%3Cproquest_cross%3E2686242368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686242368&rft_id=info:pmid/&rfr_iscdi=true |