Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency

Vacuum evaporation is promising for the high-throughput fabrication of perovskite solar cells (PSCs) because of its solvent-free characteristic, precise control of film thickness, and compatibility with large-scale production. Nevertheless, the power conversion efficiency (PCE) of PSCs fabricated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2022-07, Vol.8 (28), p.eabo7422
Hauptverfasser: Li, Hang, Zhou, Junjie, Tan, Liguo, Li, Minghao, Jiang, Chaofan, Wang, Siyang, Zhao, Xing, Liu, Yue, Zhang, Yu, Ye, Yiran, Tress, Wolfgang, Yi, Chenyi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 28
container_start_page eabo7422
container_title Science advances
container_volume 8
creator Li, Hang
Zhou, Junjie
Tan, Liguo
Li, Minghao
Jiang, Chaofan
Wang, Siyang
Zhao, Xing
Liu, Yue
Zhang, Yu
Ye, Yiran
Tress, Wolfgang
Yi, Chenyi
description Vacuum evaporation is promising for the high-throughput fabrication of perovskite solar cells (PSCs) because of its solvent-free characteristic, precise control of film thickness, and compatibility with large-scale production. Nevertheless, the power conversion efficiency (PCE) of PSCs fabricated by vacuum evaporation lags behind that of solution-processed PSCs. Here, we report a Cl-containing alloy-mediated sequential vacuum evaporation approach to fabricate perovskite films. The presence of Cl in the alloy facilitates organic ammonium halide diffusion and the subsequent perovskite conversion reaction, leading to homogeneous pinhole-free perovskite films with few defects. The resulting PSCs yield a PCE of 24.42%, 23.44% (certified 22.6%), and 19.87% for 0.1, 1.0, and 14.4 square centimeters (mini-module, aperture area), respectively. The unencapsulated PSCs show good stability with negligible decline in performance after storage in dry air for more than 4000 hours. Our method provides a reproducible approach for scalable fabrication of large-area, high-efficiency PSCs and other perovskite-based optoelectronics.
doi_str_mv 10.1126/sciadv.abo7422
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2692072699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692072699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-35e1c7d0ca96106472fc9b8621e0655d2d354d408061715933cc3edbdcbc837a3</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMorqx79Si5CF665qNJ2qMsfsGCiHouaTJlo21Tk7ay_94uu4qXmTk88zLzIHRByZJSJm-icdqOS116lTJ2hM4YVyJhIs2O_80ztIjxgxBCUykFzU_RjItMKEGzM_TyCl8DtL3TNR61GYYmgVF3PugeLO4g-DF-uh5w9LUO2EBdR_zt-g1ufADcb3SLWXqFoaqccdCa7Tk6qXQdYXHoc_R-f_e2ekzWzw9Pq9t1YjgXfcIFUKMsMTqXlMhUscrkZSYZBSKFsMxykdqUZERSRUXOuTEcbGlNaTKuNJ-j631uF_z0QuyLxsXdfboFP8SCyZwRNdV8Qpd71AQfY4Cq6IJrdNgWlBQ7k8XeZHEwOS1cHrKHsgH7h_964z8TZHCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692072699</pqid></control><display><type>article</type><title>Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Li, Hang ; Zhou, Junjie ; Tan, Liguo ; Li, Minghao ; Jiang, Chaofan ; Wang, Siyang ; Zhao, Xing ; Liu, Yue ; Zhang, Yu ; Ye, Yiran ; Tress, Wolfgang ; Yi, Chenyi</creator><creatorcontrib>Li, Hang ; Zhou, Junjie ; Tan, Liguo ; Li, Minghao ; Jiang, Chaofan ; Wang, Siyang ; Zhao, Xing ; Liu, Yue ; Zhang, Yu ; Ye, Yiran ; Tress, Wolfgang ; Yi, Chenyi</creatorcontrib><description>Vacuum evaporation is promising for the high-throughput fabrication of perovskite solar cells (PSCs) because of its solvent-free characteristic, precise control of film thickness, and compatibility with large-scale production. Nevertheless, the power conversion efficiency (PCE) of PSCs fabricated by vacuum evaporation lags behind that of solution-processed PSCs. Here, we report a Cl-containing alloy-mediated sequential vacuum evaporation approach to fabricate perovskite films. The presence of Cl in the alloy facilitates organic ammonium halide diffusion and the subsequent perovskite conversion reaction, leading to homogeneous pinhole-free perovskite films with few defects. The resulting PSCs yield a PCE of 24.42%, 23.44% (certified 22.6%), and 19.87% for 0.1, 1.0, and 14.4 square centimeters (mini-module, aperture area), respectively. The unencapsulated PSCs show good stability with negligible decline in performance after storage in dry air for more than 4000 hours. Our method provides a reproducible approach for scalable fabrication of large-area, high-efficiency PSCs and other perovskite-based optoelectronics.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abo7422</identifier><identifier>PMID: 35857518</identifier><language>eng</language><publisher>United States</publisher><ispartof>Science advances, 2022-07, Vol.8 (28), p.eabo7422</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-35e1c7d0ca96106472fc9b8621e0655d2d354d408061715933cc3edbdcbc837a3</citedby><cites>FETCH-LOGICAL-c335t-35e1c7d0ca96106472fc9b8621e0655d2d354d408061715933cc3edbdcbc837a3</cites><orcidid>0000-0001-6383-7383 ; 0000-0002-4010-239X ; 0000-0001-9966-8403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35857518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Zhou, Junjie</creatorcontrib><creatorcontrib>Tan, Liguo</creatorcontrib><creatorcontrib>Li, Minghao</creatorcontrib><creatorcontrib>Jiang, Chaofan</creatorcontrib><creatorcontrib>Wang, Siyang</creatorcontrib><creatorcontrib>Zhao, Xing</creatorcontrib><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Ye, Yiran</creatorcontrib><creatorcontrib>Tress, Wolfgang</creatorcontrib><creatorcontrib>Yi, Chenyi</creatorcontrib><title>Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Vacuum evaporation is promising for the high-throughput fabrication of perovskite solar cells (PSCs) because of its solvent-free characteristic, precise control of film thickness, and compatibility with large-scale production. Nevertheless, the power conversion efficiency (PCE) of PSCs fabricated by vacuum evaporation lags behind that of solution-processed PSCs. Here, we report a Cl-containing alloy-mediated sequential vacuum evaporation approach to fabricate perovskite films. The presence of Cl in the alloy facilitates organic ammonium halide diffusion and the subsequent perovskite conversion reaction, leading to homogeneous pinhole-free perovskite films with few defects. The resulting PSCs yield a PCE of 24.42%, 23.44% (certified 22.6%), and 19.87% for 0.1, 1.0, and 14.4 square centimeters (mini-module, aperture area), respectively. The unencapsulated PSCs show good stability with negligible decline in performance after storage in dry air for more than 4000 hours. Our method provides a reproducible approach for scalable fabrication of large-area, high-efficiency PSCs and other perovskite-based optoelectronics.</description><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhoMorqx79Si5CF665qNJ2qMsfsGCiHouaTJlo21Tk7ay_94uu4qXmTk88zLzIHRByZJSJm-icdqOS116lTJ2hM4YVyJhIs2O_80ztIjxgxBCUykFzU_RjItMKEGzM_TyCl8DtL3TNR61GYYmgVF3PugeLO4g-DF-uh5w9LUO2EBdR_zt-g1ufADcb3SLWXqFoaqccdCa7Tk6qXQdYXHoc_R-f_e2ekzWzw9Pq9t1YjgXfcIFUKMsMTqXlMhUscrkZSYZBSKFsMxykdqUZERSRUXOuTEcbGlNaTKuNJ-j631uF_z0QuyLxsXdfboFP8SCyZwRNdV8Qpd71AQfY4Cq6IJrdNgWlBQ7k8XeZHEwOS1cHrKHsgH7h_964z8TZHCs</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Li, Hang</creator><creator>Zhou, Junjie</creator><creator>Tan, Liguo</creator><creator>Li, Minghao</creator><creator>Jiang, Chaofan</creator><creator>Wang, Siyang</creator><creator>Zhao, Xing</creator><creator>Liu, Yue</creator><creator>Zhang, Yu</creator><creator>Ye, Yiran</creator><creator>Tress, Wolfgang</creator><creator>Yi, Chenyi</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6383-7383</orcidid><orcidid>https://orcid.org/0000-0002-4010-239X</orcidid><orcidid>https://orcid.org/0000-0001-9966-8403</orcidid></search><sort><creationdate>20220715</creationdate><title>Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency</title><author>Li, Hang ; Zhou, Junjie ; Tan, Liguo ; Li, Minghao ; Jiang, Chaofan ; Wang, Siyang ; Zhao, Xing ; Liu, Yue ; Zhang, Yu ; Ye, Yiran ; Tress, Wolfgang ; Yi, Chenyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-35e1c7d0ca96106472fc9b8621e0655d2d354d408061715933cc3edbdcbc837a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Zhou, Junjie</creatorcontrib><creatorcontrib>Tan, Liguo</creatorcontrib><creatorcontrib>Li, Minghao</creatorcontrib><creatorcontrib>Jiang, Chaofan</creatorcontrib><creatorcontrib>Wang, Siyang</creatorcontrib><creatorcontrib>Zhao, Xing</creatorcontrib><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Ye, Yiran</creatorcontrib><creatorcontrib>Tress, Wolfgang</creatorcontrib><creatorcontrib>Yi, Chenyi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hang</au><au>Zhou, Junjie</au><au>Tan, Liguo</au><au>Li, Minghao</au><au>Jiang, Chaofan</au><au>Wang, Siyang</au><au>Zhao, Xing</au><au>Liu, Yue</au><au>Zhang, Yu</au><au>Ye, Yiran</au><au>Tress, Wolfgang</au><au>Yi, Chenyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-07-15</date><risdate>2022</risdate><volume>8</volume><issue>28</issue><spage>eabo7422</spage><pages>eabo7422-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Vacuum evaporation is promising for the high-throughput fabrication of perovskite solar cells (PSCs) because of its solvent-free characteristic, precise control of film thickness, and compatibility with large-scale production. Nevertheless, the power conversion efficiency (PCE) of PSCs fabricated by vacuum evaporation lags behind that of solution-processed PSCs. Here, we report a Cl-containing alloy-mediated sequential vacuum evaporation approach to fabricate perovskite films. The presence of Cl in the alloy facilitates organic ammonium halide diffusion and the subsequent perovskite conversion reaction, leading to homogeneous pinhole-free perovskite films with few defects. The resulting PSCs yield a PCE of 24.42%, 23.44% (certified 22.6%), and 19.87% for 0.1, 1.0, and 14.4 square centimeters (mini-module, aperture area), respectively. The unencapsulated PSCs show good stability with negligible decline in performance after storage in dry air for more than 4000 hours. Our method provides a reproducible approach for scalable fabrication of large-area, high-efficiency PSCs and other perovskite-based optoelectronics.</abstract><cop>United States</cop><pmid>35857518</pmid><doi>10.1126/sciadv.abo7422</doi><orcidid>https://orcid.org/0000-0001-6383-7383</orcidid><orcidid>https://orcid.org/0000-0002-4010-239X</orcidid><orcidid>https://orcid.org/0000-0001-9966-8403</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2022-07, Vol.8 (28), p.eabo7422
issn 2375-2548
2375-2548
language eng
recordid cdi_proquest_miscellaneous_2692072699
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20vacuum-evaporated%20perovskite%20solar%20cells%20with%20more%20than%2024%25%20efficiency&rft.jtitle=Science%20advances&rft.au=Li,%20Hang&rft.date=2022-07-15&rft.volume=8&rft.issue=28&rft.spage=eabo7422&rft.pages=eabo7422-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abo7422&rft_dat=%3Cproquest_cross%3E2692072699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692072699&rft_id=info:pmid/35857518&rfr_iscdi=true