Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system

The activity of oxidoreductases, malate dehydrogenase and lactate dehydrogenase (MDH, 1.1.1.37; LDH, 1.1.1.27), as well as parameters of adenylate system—[ATP], [ADP], [AMP], total adenylate pool (AP), and adenylate energy charge (AEC) in medulla oblongata (MB) and forebrain, midbrain, and diencepha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fish physiology and biochemistry 2022-08, Vol.48 (4), p.1105-1115
Hauptverfasser: Kolesnikova, Evgenia E., Soldatov, Aleksandr A., Golovina, Irina V., Sysoeva, Inna V., Sysoev, Aleksandr A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1115
container_issue 4
container_start_page 1105
container_title Fish physiology and biochemistry
container_volume 48
creator Kolesnikova, Evgenia E.
Soldatov, Aleksandr A.
Golovina, Irina V.
Sysoeva, Inna V.
Sysoev, Aleksandr A.
description The activity of oxidoreductases, malate dehydrogenase and lactate dehydrogenase (MDH, 1.1.1.37; LDH, 1.1.1.27), as well as parameters of adenylate system—[ATP], [ADP], [AMP], total adenylate pool (AP), and adenylate energy charge (AEC) in medulla oblongata (MB) and forebrain, midbrain, and diencephalon (FDMB)—were studied in the scorpionfish under acute hypoxia (0.9–1.2 mg O 2 ·L −1 , 90 min). A higher MDH activity level was observed in MB and FDMB, as compared to LDH ( p  
doi_str_mv 10.1007/s10695-022-01103-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2691789407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691789407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-f155806eb0e0cedef852aa4ae9091337322a2b257ceb368bcd51bd148cd6b9f03</originalsourceid><addsrcrecordid>eNp9kU-L1TAUxYMo-JzxC7gKuHFh9SZpm9adDOMfeOBiZtbhNr2dl6FNapKK_UR-Tdt5guDC1eVyf-fcA4exVwLeCQD9Pgmo26oAKQsQAlQhn7CDqLQqKlE3T9kBWgmF0KV8zl6k9AAAra7Fgf26HgaymYeBo10y8dM6h58OefA8n4h3EZ3n5Cner3yijF0YXZp2fj8nG-Lsgh9cOvGbfUHyyOcQ7ZL40XmPtKS3XOiq-fComDFnin432P70IVK_2IyJtv_Z_XB55eh7jj35dcQtUFpTpumSPRtwTPTyz7xgd5-ub6--FMdvn79efTwWVjYyF4OoqgZq6oDAUk9DU0nEEqmFViillZQoO1lpS52qm872leh6UTa2r7t2AHXB3px95xi-L5SymVyyNI7oKSzJyLoVumlL0Bv6-h_0ISzRb-mM1KBEIxWUGyXPlI0hpUiDmaObMK5GgNm7M-fuzNadeezOyE2kzqK0wf6e4l_r_6h-A4KNnyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703182304</pqid></control><display><type>article</type><title>Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system</title><source>SpringerNature Journals</source><creator>Kolesnikova, Evgenia E. ; Soldatov, Aleksandr A. ; Golovina, Irina V. ; Sysoeva, Inna V. ; Sysoev, Aleksandr A.</creator><creatorcontrib>Kolesnikova, Evgenia E. ; Soldatov, Aleksandr A. ; Golovina, Irina V. ; Sysoeva, Inna V. ; Sysoev, Aleksandr A.</creatorcontrib><description>The activity of oxidoreductases, malate dehydrogenase and lactate dehydrogenase (MDH, 1.1.1.37; LDH, 1.1.1.27), as well as parameters of adenylate system—[ATP], [ADP], [AMP], total adenylate pool (AP), and adenylate energy charge (AEC) in medulla oblongata (MB) and forebrain, midbrain, and diencephalon (FDMB)—were studied in the scorpionfish under acute hypoxia (0.9–1.2 mg O 2 ·L −1 , 90 min). A higher MDH activity level was observed in MB and FDMB, as compared to LDH ( p  &lt; 0.05). At the same time, MB showed a higher adenylate content and increased AP ( p  &lt; 0.05). AEC did not exceed ~ 0.7 (vs. the maximum of this index ~ 0.9–1.0) in the brain of the scorpionfish indicating adaptation of the tissue energy status to hypoxia. A rapid decrease in MDH activity ( p  &lt; 0.05) was observed in MB under acute hypoxia. These changes were accompanied by insignificant LDH activation. A pronounced LDH activation ( p  &lt; 0.05), a decrease in MDH activity, and the highest AP raise ( p  &lt; 0.05) were observed in FDMB, suggesting activation of glycolysis and simultaneous decrease in the rate of ATP consumption. MB and FDMB demonstrated the ability to a relative retention of AEC during hypoxia. The unidirectional metabolic adaptation was based on the intensification of glycolysis, a decrease of ATP consumption, and a subsequent increase in adenylate concentration that allowed the scorpionfish brain structures to maintain the energy status under acute hypoxia.</description><identifier>ISSN: 0920-1742</identifier><identifier>EISSN: 1573-5168</identifier><identifier>DOI: 10.1007/s10695-022-01103-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptation ; Adenosine diphosphate ; ADP ; Animal Anatomy ; Animal Biochemistry ; Animal Physiology ; ATP ; Biomedical and Life Sciences ; Brain ; Consumption ; Dehydrogenase ; Dehydrogenases ; Diencephalon ; Energy ; Energy balance ; Energy charge ; Energy metabolism ; Forebrain ; Freshwater &amp; Marine Ecology ; Glycolysis ; Histology ; Hypoxia ; L-Lactate dehydrogenase ; Lactate ; Lactate dehydrogenase ; Lactic acid ; Life Sciences ; Malate dehydrogenase ; Marine fishes ; Medulla oblongata ; Mesencephalon ; Metabolism ; Morphology ; Oxidoreductase ; Oxidoreductases ; Zoology</subject><ispartof>Fish physiology and biochemistry, 2022-08, Vol.48 (4), p.1105-1115</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-f155806eb0e0cedef852aa4ae9091337322a2b257ceb368bcd51bd148cd6b9f03</citedby><cites>FETCH-LOGICAL-c282t-f155806eb0e0cedef852aa4ae9091337322a2b257ceb368bcd51bd148cd6b9f03</cites><orcidid>0000-0002-9862-123X ; 0000-0003-1199-7339 ; 0000-0002-3524-158X ; 0000-0003-3641-4419 ; 0000-0002-9236-6020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10695-022-01103-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10695-022-01103-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kolesnikova, Evgenia E.</creatorcontrib><creatorcontrib>Soldatov, Aleksandr A.</creatorcontrib><creatorcontrib>Golovina, Irina V.</creatorcontrib><creatorcontrib>Sysoeva, Inna V.</creatorcontrib><creatorcontrib>Sysoev, Aleksandr A.</creatorcontrib><title>Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system</title><title>Fish physiology and biochemistry</title><addtitle>Fish Physiol Biochem</addtitle><description>The activity of oxidoreductases, malate dehydrogenase and lactate dehydrogenase (MDH, 1.1.1.37; LDH, 1.1.1.27), as well as parameters of adenylate system—[ATP], [ADP], [AMP], total adenylate pool (AP), and adenylate energy charge (AEC) in medulla oblongata (MB) and forebrain, midbrain, and diencephalon (FDMB)—were studied in the scorpionfish under acute hypoxia (0.9–1.2 mg O 2 ·L −1 , 90 min). A higher MDH activity level was observed in MB and FDMB, as compared to LDH ( p  &lt; 0.05). At the same time, MB showed a higher adenylate content and increased AP ( p  &lt; 0.05). AEC did not exceed ~ 0.7 (vs. the maximum of this index ~ 0.9–1.0) in the brain of the scorpionfish indicating adaptation of the tissue energy status to hypoxia. A rapid decrease in MDH activity ( p  &lt; 0.05) was observed in MB under acute hypoxia. These changes were accompanied by insignificant LDH activation. A pronounced LDH activation ( p  &lt; 0.05), a decrease in MDH activity, and the highest AP raise ( p  &lt; 0.05) were observed in FDMB, suggesting activation of glycolysis and simultaneous decrease in the rate of ATP consumption. MB and FDMB demonstrated the ability to a relative retention of AEC during hypoxia. The unidirectional metabolic adaptation was based on the intensification of glycolysis, a decrease of ATP consumption, and a subsequent increase in adenylate concentration that allowed the scorpionfish brain structures to maintain the energy status under acute hypoxia.</description><subject>Adaptation</subject><subject>Adenosine diphosphate</subject><subject>ADP</subject><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Animal Physiology</subject><subject>ATP</subject><subject>Biomedical and Life Sciences</subject><subject>Brain</subject><subject>Consumption</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Diencephalon</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy charge</subject><subject>Energy metabolism</subject><subject>Forebrain</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Glycolysis</subject><subject>Histology</subject><subject>Hypoxia</subject><subject>L-Lactate dehydrogenase</subject><subject>Lactate</subject><subject>Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Life Sciences</subject><subject>Malate dehydrogenase</subject><subject>Marine fishes</subject><subject>Medulla oblongata</subject><subject>Mesencephalon</subject><subject>Metabolism</subject><subject>Morphology</subject><subject>Oxidoreductase</subject><subject>Oxidoreductases</subject><subject>Zoology</subject><issn>0920-1742</issn><issn>1573-5168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU-L1TAUxYMo-JzxC7gKuHFh9SZpm9adDOMfeOBiZtbhNr2dl6FNapKK_UR-Tdt5guDC1eVyf-fcA4exVwLeCQD9Pgmo26oAKQsQAlQhn7CDqLQqKlE3T9kBWgmF0KV8zl6k9AAAra7Fgf26HgaymYeBo10y8dM6h58OefA8n4h3EZ3n5Cner3yijF0YXZp2fj8nG-Lsgh9cOvGbfUHyyOcQ7ZL40XmPtKS3XOiq-fComDFnin432P70IVK_2IyJtv_Z_XB55eh7jj35dcQtUFpTpumSPRtwTPTyz7xgd5-ub6--FMdvn79efTwWVjYyF4OoqgZq6oDAUk9DU0nEEqmFViillZQoO1lpS52qm872leh6UTa2r7t2AHXB3px95xi-L5SymVyyNI7oKSzJyLoVumlL0Bv6-h_0ISzRb-mM1KBEIxWUGyXPlI0hpUiDmaObMK5GgNm7M-fuzNadeezOyE2kzqK0wf6e4l_r_6h-A4KNnyE</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kolesnikova, Evgenia E.</creator><creator>Soldatov, Aleksandr A.</creator><creator>Golovina, Irina V.</creator><creator>Sysoeva, Inna V.</creator><creator>Sysoev, Aleksandr A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9862-123X</orcidid><orcidid>https://orcid.org/0000-0003-1199-7339</orcidid><orcidid>https://orcid.org/0000-0002-3524-158X</orcidid><orcidid>https://orcid.org/0000-0003-3641-4419</orcidid><orcidid>https://orcid.org/0000-0002-9236-6020</orcidid></search><sort><creationdate>20220801</creationdate><title>Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system</title><author>Kolesnikova, Evgenia E. ; Soldatov, Aleksandr A. ; Golovina, Irina V. ; Sysoeva, Inna V. ; Sysoev, Aleksandr A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-f155806eb0e0cedef852aa4ae9091337322a2b257ceb368bcd51bd148cd6b9f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Adenosine diphosphate</topic><topic>ADP</topic><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Animal Physiology</topic><topic>ATP</topic><topic>Biomedical and Life Sciences</topic><topic>Brain</topic><topic>Consumption</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Diencephalon</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy charge</topic><topic>Energy metabolism</topic><topic>Forebrain</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Glycolysis</topic><topic>Histology</topic><topic>Hypoxia</topic><topic>L-Lactate dehydrogenase</topic><topic>Lactate</topic><topic>Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Life Sciences</topic><topic>Malate dehydrogenase</topic><topic>Marine fishes</topic><topic>Medulla oblongata</topic><topic>Mesencephalon</topic><topic>Metabolism</topic><topic>Morphology</topic><topic>Oxidoreductase</topic><topic>Oxidoreductases</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolesnikova, Evgenia E.</creatorcontrib><creatorcontrib>Soldatov, Aleksandr A.</creatorcontrib><creatorcontrib>Golovina, Irina V.</creatorcontrib><creatorcontrib>Sysoeva, Inna V.</creatorcontrib><creatorcontrib>Sysoev, Aleksandr A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Fish physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolesnikova, Evgenia E.</au><au>Soldatov, Aleksandr A.</au><au>Golovina, Irina V.</au><au>Sysoeva, Inna V.</au><au>Sysoev, Aleksandr A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system</atitle><jtitle>Fish physiology and biochemistry</jtitle><stitle>Fish Physiol Biochem</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>48</volume><issue>4</issue><spage>1105</spage><epage>1115</epage><pages>1105-1115</pages><issn>0920-1742</issn><eissn>1573-5168</eissn><abstract>The activity of oxidoreductases, malate dehydrogenase and lactate dehydrogenase (MDH, 1.1.1.37; LDH, 1.1.1.27), as well as parameters of adenylate system—[ATP], [ADP], [AMP], total adenylate pool (AP), and adenylate energy charge (AEC) in medulla oblongata (MB) and forebrain, midbrain, and diencephalon (FDMB)—were studied in the scorpionfish under acute hypoxia (0.9–1.2 mg O 2 ·L −1 , 90 min). A higher MDH activity level was observed in MB and FDMB, as compared to LDH ( p  &lt; 0.05). At the same time, MB showed a higher adenylate content and increased AP ( p  &lt; 0.05). AEC did not exceed ~ 0.7 (vs. the maximum of this index ~ 0.9–1.0) in the brain of the scorpionfish indicating adaptation of the tissue energy status to hypoxia. A rapid decrease in MDH activity ( p  &lt; 0.05) was observed in MB under acute hypoxia. These changes were accompanied by insignificant LDH activation. A pronounced LDH activation ( p  &lt; 0.05), a decrease in MDH activity, and the highest AP raise ( p  &lt; 0.05) were observed in FDMB, suggesting activation of glycolysis and simultaneous decrease in the rate of ATP consumption. MB and FDMB demonstrated the ability to a relative retention of AEC during hypoxia. The unidirectional metabolic adaptation was based on the intensification of glycolysis, a decrease of ATP consumption, and a subsequent increase in adenylate concentration that allowed the scorpionfish brain structures to maintain the energy status under acute hypoxia.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10695-022-01103-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9862-123X</orcidid><orcidid>https://orcid.org/0000-0003-1199-7339</orcidid><orcidid>https://orcid.org/0000-0002-3524-158X</orcidid><orcidid>https://orcid.org/0000-0003-3641-4419</orcidid><orcidid>https://orcid.org/0000-0002-9236-6020</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-1742
ispartof Fish physiology and biochemistry, 2022-08, Vol.48 (4), p.1105-1115
issn 0920-1742
1573-5168
language eng
recordid cdi_proquest_miscellaneous_2691789407
source SpringerNature Journals
subjects Adaptation
Adenosine diphosphate
ADP
Animal Anatomy
Animal Biochemistry
Animal Physiology
ATP
Biomedical and Life Sciences
Brain
Consumption
Dehydrogenase
Dehydrogenases
Diencephalon
Energy
Energy balance
Energy charge
Energy metabolism
Forebrain
Freshwater & Marine Ecology
Glycolysis
Histology
Hypoxia
L-Lactate dehydrogenase
Lactate
Lactate dehydrogenase
Lactic acid
Life Sciences
Malate dehydrogenase
Marine fishes
Medulla oblongata
Mesencephalon
Metabolism
Morphology
Oxidoreductase
Oxidoreductases
Zoology
title Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20acute%20hypoxia%20on%20the%20brain%20energy%20metabolism%20of%20the%20scorpionfish%20Scorpaena%20porcus%20Linnaeus,%201758:%20the%20pattern%20of%20oxidoreductase%20activity%20and%20adenylate%20system&rft.jtitle=Fish%20physiology%20and%20biochemistry&rft.au=Kolesnikova,%20Evgenia%20E.&rft.date=2022-08-01&rft.volume=48&rft.issue=4&rft.spage=1105&rft.epage=1115&rft.pages=1105-1115&rft.issn=0920-1742&rft.eissn=1573-5168&rft_id=info:doi/10.1007/s10695-022-01103-2&rft_dat=%3Cproquest_cross%3E2691789407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703182304&rft_id=info:pmid/&rfr_iscdi=true