Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system
The activity of oxidoreductases, malate dehydrogenase and lactate dehydrogenase (MDH, 1.1.1.37; LDH, 1.1.1.27), as well as parameters of adenylate system—[ATP], [ADP], [AMP], total adenylate pool (AP), and adenylate energy charge (AEC) in medulla oblongata (MB) and forebrain, midbrain, and diencepha...
Gespeichert in:
Veröffentlicht in: | Fish physiology and biochemistry 2022-08, Vol.48 (4), p.1105-1115 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1115 |
---|---|
container_issue | 4 |
container_start_page | 1105 |
container_title | Fish physiology and biochemistry |
container_volume | 48 |
creator | Kolesnikova, Evgenia E. Soldatov, Aleksandr A. Golovina, Irina V. Sysoeva, Inna V. Sysoev, Aleksandr A. |
description | The activity of oxidoreductases, malate dehydrogenase and lactate dehydrogenase (MDH, 1.1.1.37; LDH, 1.1.1.27), as well as parameters of adenylate system—[ATP], [ADP], [AMP], total adenylate pool (AP), and adenylate energy charge (AEC) in medulla oblongata (MB) and forebrain, midbrain, and diencephalon (FDMB)—were studied in the scorpionfish under acute hypoxia (0.9–1.2 mg O
2
·L
−1
, 90 min). A higher MDH activity level was observed in MB and FDMB, as compared to LDH (
p
|
doi_str_mv | 10.1007/s10695-022-01103-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2691789407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691789407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-f155806eb0e0cedef852aa4ae9091337322a2b257ceb368bcd51bd148cd6b9f03</originalsourceid><addsrcrecordid>eNp9kU-L1TAUxYMo-JzxC7gKuHFh9SZpm9adDOMfeOBiZtbhNr2dl6FNapKK_UR-Tdt5guDC1eVyf-fcA4exVwLeCQD9Pgmo26oAKQsQAlQhn7CDqLQqKlE3T9kBWgmF0KV8zl6k9AAAra7Fgf26HgaymYeBo10y8dM6h58OefA8n4h3EZ3n5Cner3yijF0YXZp2fj8nG-Lsgh9cOvGbfUHyyOcQ7ZL40XmPtKS3XOiq-fComDFnin432P70IVK_2IyJtv_Z_XB55eh7jj35dcQtUFpTpumSPRtwTPTyz7xgd5-ub6--FMdvn79efTwWVjYyF4OoqgZq6oDAUk9DU0nEEqmFViillZQoO1lpS52qm872leh6UTa2r7t2AHXB3px95xi-L5SymVyyNI7oKSzJyLoVumlL0Bv6-h_0ISzRb-mM1KBEIxWUGyXPlI0hpUiDmaObMK5GgNm7M-fuzNadeezOyE2kzqK0wf6e4l_r_6h-A4KNnyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703182304</pqid></control><display><type>article</type><title>Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system</title><source>SpringerNature Journals</source><creator>Kolesnikova, Evgenia E. ; Soldatov, Aleksandr A. ; Golovina, Irina V. ; Sysoeva, Inna V. ; Sysoev, Aleksandr A.</creator><creatorcontrib>Kolesnikova, Evgenia E. ; Soldatov, Aleksandr A. ; Golovina, Irina V. ; Sysoeva, Inna V. ; Sysoev, Aleksandr A.</creatorcontrib><description>The activity of oxidoreductases, malate dehydrogenase and lactate dehydrogenase (MDH, 1.1.1.37; LDH, 1.1.1.27), as well as parameters of adenylate system—[ATP], [ADP], [AMP], total adenylate pool (AP), and adenylate energy charge (AEC) in medulla oblongata (MB) and forebrain, midbrain, and diencephalon (FDMB)—were studied in the scorpionfish under acute hypoxia (0.9–1.2 mg O
2
·L
−1
, 90 min). A higher MDH activity level was observed in MB and FDMB, as compared to LDH (
p
< 0.05). At the same time, MB showed a higher adenylate content and increased AP (
p
< 0.05). AEC did not exceed ~ 0.7 (vs. the maximum of this index ~ 0.9–1.0) in the brain of the scorpionfish indicating adaptation of the tissue energy status to hypoxia. A rapid decrease in MDH activity (
p
< 0.05) was observed in MB under acute hypoxia. These changes were accompanied by insignificant LDH activation. A pronounced LDH activation (
p
< 0.05), a decrease in MDH activity, and the highest AP raise (
p
< 0.05) were observed in FDMB, suggesting activation of glycolysis and simultaneous decrease in the rate of ATP consumption. MB and FDMB demonstrated the ability to a relative retention of AEC during hypoxia. The unidirectional metabolic adaptation was based on the intensification of glycolysis, a decrease of ATP consumption, and a subsequent increase in adenylate concentration that allowed the scorpionfish brain structures to maintain the energy status under acute hypoxia.</description><identifier>ISSN: 0920-1742</identifier><identifier>EISSN: 1573-5168</identifier><identifier>DOI: 10.1007/s10695-022-01103-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptation ; Adenosine diphosphate ; ADP ; Animal Anatomy ; Animal Biochemistry ; Animal Physiology ; ATP ; Biomedical and Life Sciences ; Brain ; Consumption ; Dehydrogenase ; Dehydrogenases ; Diencephalon ; Energy ; Energy balance ; Energy charge ; Energy metabolism ; Forebrain ; Freshwater & Marine Ecology ; Glycolysis ; Histology ; Hypoxia ; L-Lactate dehydrogenase ; Lactate ; Lactate dehydrogenase ; Lactic acid ; Life Sciences ; Malate dehydrogenase ; Marine fishes ; Medulla oblongata ; Mesencephalon ; Metabolism ; Morphology ; Oxidoreductase ; Oxidoreductases ; Zoology</subject><ispartof>Fish physiology and biochemistry, 2022-08, Vol.48 (4), p.1105-1115</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-f155806eb0e0cedef852aa4ae9091337322a2b257ceb368bcd51bd148cd6b9f03</citedby><cites>FETCH-LOGICAL-c282t-f155806eb0e0cedef852aa4ae9091337322a2b257ceb368bcd51bd148cd6b9f03</cites><orcidid>0000-0002-9862-123X ; 0000-0003-1199-7339 ; 0000-0002-3524-158X ; 0000-0003-3641-4419 ; 0000-0002-9236-6020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10695-022-01103-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10695-022-01103-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kolesnikova, Evgenia E.</creatorcontrib><creatorcontrib>Soldatov, Aleksandr A.</creatorcontrib><creatorcontrib>Golovina, Irina V.</creatorcontrib><creatorcontrib>Sysoeva, Inna V.</creatorcontrib><creatorcontrib>Sysoev, Aleksandr A.</creatorcontrib><title>Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system</title><title>Fish physiology and biochemistry</title><addtitle>Fish Physiol Biochem</addtitle><description>The activity of oxidoreductases, malate dehydrogenase and lactate dehydrogenase (MDH, 1.1.1.37; LDH, 1.1.1.27), as well as parameters of adenylate system—[ATP], [ADP], [AMP], total adenylate pool (AP), and adenylate energy charge (AEC) in medulla oblongata (MB) and forebrain, midbrain, and diencephalon (FDMB)—were studied in the scorpionfish under acute hypoxia (0.9–1.2 mg O
2
·L
−1
, 90 min). A higher MDH activity level was observed in MB and FDMB, as compared to LDH (
p
< 0.05). At the same time, MB showed a higher adenylate content and increased AP (
p
< 0.05). AEC did not exceed ~ 0.7 (vs. the maximum of this index ~ 0.9–1.0) in the brain of the scorpionfish indicating adaptation of the tissue energy status to hypoxia. A rapid decrease in MDH activity (
p
< 0.05) was observed in MB under acute hypoxia. These changes were accompanied by insignificant LDH activation. A pronounced LDH activation (
p
< 0.05), a decrease in MDH activity, and the highest AP raise (
p
< 0.05) were observed in FDMB, suggesting activation of glycolysis and simultaneous decrease in the rate of ATP consumption. MB and FDMB demonstrated the ability to a relative retention of AEC during hypoxia. The unidirectional metabolic adaptation was based on the intensification of glycolysis, a decrease of ATP consumption, and a subsequent increase in adenylate concentration that allowed the scorpionfish brain structures to maintain the energy status under acute hypoxia.</description><subject>Adaptation</subject><subject>Adenosine diphosphate</subject><subject>ADP</subject><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Animal Physiology</subject><subject>ATP</subject><subject>Biomedical and Life Sciences</subject><subject>Brain</subject><subject>Consumption</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Diencephalon</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy charge</subject><subject>Energy metabolism</subject><subject>Forebrain</subject><subject>Freshwater & Marine Ecology</subject><subject>Glycolysis</subject><subject>Histology</subject><subject>Hypoxia</subject><subject>L-Lactate dehydrogenase</subject><subject>Lactate</subject><subject>Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Life Sciences</subject><subject>Malate dehydrogenase</subject><subject>Marine fishes</subject><subject>Medulla oblongata</subject><subject>Mesencephalon</subject><subject>Metabolism</subject><subject>Morphology</subject><subject>Oxidoreductase</subject><subject>Oxidoreductases</subject><subject>Zoology</subject><issn>0920-1742</issn><issn>1573-5168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU-L1TAUxYMo-JzxC7gKuHFh9SZpm9adDOMfeOBiZtbhNr2dl6FNapKK_UR-Tdt5guDC1eVyf-fcA4exVwLeCQD9Pgmo26oAKQsQAlQhn7CDqLQqKlE3T9kBWgmF0KV8zl6k9AAAra7Fgf26HgaymYeBo10y8dM6h58OefA8n4h3EZ3n5Cner3yijF0YXZp2fj8nG-Lsgh9cOvGbfUHyyOcQ7ZL40XmPtKS3XOiq-fComDFnin432P70IVK_2IyJtv_Z_XB55eh7jj35dcQtUFpTpumSPRtwTPTyz7xgd5-ub6--FMdvn79efTwWVjYyF4OoqgZq6oDAUk9DU0nEEqmFViillZQoO1lpS52qm872leh6UTa2r7t2AHXB3px95xi-L5SymVyyNI7oKSzJyLoVumlL0Bv6-h_0ISzRb-mM1KBEIxWUGyXPlI0hpUiDmaObMK5GgNm7M-fuzNadeezOyE2kzqK0wf6e4l_r_6h-A4KNnyE</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kolesnikova, Evgenia E.</creator><creator>Soldatov, Aleksandr A.</creator><creator>Golovina, Irina V.</creator><creator>Sysoeva, Inna V.</creator><creator>Sysoev, Aleksandr A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9862-123X</orcidid><orcidid>https://orcid.org/0000-0003-1199-7339</orcidid><orcidid>https://orcid.org/0000-0002-3524-158X</orcidid><orcidid>https://orcid.org/0000-0003-3641-4419</orcidid><orcidid>https://orcid.org/0000-0002-9236-6020</orcidid></search><sort><creationdate>20220801</creationdate><title>Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system</title><author>Kolesnikova, Evgenia E. ; Soldatov, Aleksandr A. ; Golovina, Irina V. ; Sysoeva, Inna V. ; Sysoev, Aleksandr A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-f155806eb0e0cedef852aa4ae9091337322a2b257ceb368bcd51bd148cd6b9f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Adenosine diphosphate</topic><topic>ADP</topic><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Animal Physiology</topic><topic>ATP</topic><topic>Biomedical and Life Sciences</topic><topic>Brain</topic><topic>Consumption</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Diencephalon</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy charge</topic><topic>Energy metabolism</topic><topic>Forebrain</topic><topic>Freshwater & Marine Ecology</topic><topic>Glycolysis</topic><topic>Histology</topic><topic>Hypoxia</topic><topic>L-Lactate dehydrogenase</topic><topic>Lactate</topic><topic>Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Life Sciences</topic><topic>Malate dehydrogenase</topic><topic>Marine fishes</topic><topic>Medulla oblongata</topic><topic>Mesencephalon</topic><topic>Metabolism</topic><topic>Morphology</topic><topic>Oxidoreductase</topic><topic>Oxidoreductases</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolesnikova, Evgenia E.</creatorcontrib><creatorcontrib>Soldatov, Aleksandr A.</creatorcontrib><creatorcontrib>Golovina, Irina V.</creatorcontrib><creatorcontrib>Sysoeva, Inna V.</creatorcontrib><creatorcontrib>Sysoev, Aleksandr A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Fish physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolesnikova, Evgenia E.</au><au>Soldatov, Aleksandr A.</au><au>Golovina, Irina V.</au><au>Sysoeva, Inna V.</au><au>Sysoev, Aleksandr A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system</atitle><jtitle>Fish physiology and biochemistry</jtitle><stitle>Fish Physiol Biochem</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>48</volume><issue>4</issue><spage>1105</spage><epage>1115</epage><pages>1105-1115</pages><issn>0920-1742</issn><eissn>1573-5168</eissn><abstract>The activity of oxidoreductases, malate dehydrogenase and lactate dehydrogenase (MDH, 1.1.1.37; LDH, 1.1.1.27), as well as parameters of adenylate system—[ATP], [ADP], [AMP], total adenylate pool (AP), and adenylate energy charge (AEC) in medulla oblongata (MB) and forebrain, midbrain, and diencephalon (FDMB)—were studied in the scorpionfish under acute hypoxia (0.9–1.2 mg O
2
·L
−1
, 90 min). A higher MDH activity level was observed in MB and FDMB, as compared to LDH (
p
< 0.05). At the same time, MB showed a higher adenylate content and increased AP (
p
< 0.05). AEC did not exceed ~ 0.7 (vs. the maximum of this index ~ 0.9–1.0) in the brain of the scorpionfish indicating adaptation of the tissue energy status to hypoxia. A rapid decrease in MDH activity (
p
< 0.05) was observed in MB under acute hypoxia. These changes were accompanied by insignificant LDH activation. A pronounced LDH activation (
p
< 0.05), a decrease in MDH activity, and the highest AP raise (
p
< 0.05) were observed in FDMB, suggesting activation of glycolysis and simultaneous decrease in the rate of ATP consumption. MB and FDMB demonstrated the ability to a relative retention of AEC during hypoxia. The unidirectional metabolic adaptation was based on the intensification of glycolysis, a decrease of ATP consumption, and a subsequent increase in adenylate concentration that allowed the scorpionfish brain structures to maintain the energy status under acute hypoxia.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10695-022-01103-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9862-123X</orcidid><orcidid>https://orcid.org/0000-0003-1199-7339</orcidid><orcidid>https://orcid.org/0000-0002-3524-158X</orcidid><orcidid>https://orcid.org/0000-0003-3641-4419</orcidid><orcidid>https://orcid.org/0000-0002-9236-6020</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-1742 |
ispartof | Fish physiology and biochemistry, 2022-08, Vol.48 (4), p.1105-1115 |
issn | 0920-1742 1573-5168 |
language | eng |
recordid | cdi_proquest_miscellaneous_2691789407 |
source | SpringerNature Journals |
subjects | Adaptation Adenosine diphosphate ADP Animal Anatomy Animal Biochemistry Animal Physiology ATP Biomedical and Life Sciences Brain Consumption Dehydrogenase Dehydrogenases Diencephalon Energy Energy balance Energy charge Energy metabolism Forebrain Freshwater & Marine Ecology Glycolysis Histology Hypoxia L-Lactate dehydrogenase Lactate Lactate dehydrogenase Lactic acid Life Sciences Malate dehydrogenase Marine fishes Medulla oblongata Mesencephalon Metabolism Morphology Oxidoreductase Oxidoreductases Zoology |
title | Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20acute%20hypoxia%20on%20the%20brain%20energy%20metabolism%20of%20the%20scorpionfish%20Scorpaena%20porcus%20Linnaeus,%201758:%20the%20pattern%20of%20oxidoreductase%20activity%20and%20adenylate%20system&rft.jtitle=Fish%20physiology%20and%20biochemistry&rft.au=Kolesnikova,%20Evgenia%20E.&rft.date=2022-08-01&rft.volume=48&rft.issue=4&rft.spage=1105&rft.epage=1115&rft.pages=1105-1115&rft.issn=0920-1742&rft.eissn=1573-5168&rft_id=info:doi/10.1007/s10695-022-01103-2&rft_dat=%3Cproquest_cross%3E2691789407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703182304&rft_id=info:pmid/&rfr_iscdi=true |