Optimizing cutting parameters in process planning of prismatic parts by using genetic algorithms

The determination of optimal cutting parameters, such as the number of passes, depth of cut for each pass, cutting speed and feed, which are applicable for assigned cutting tools, is one of the vital modules in process planning of metal parts, since the economy of machining operations plays an impor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2001-10, Vol.39 (15), p.3303-3328
Hauptverfasser: Dereli, T., Filiz, I. H., Baykasoglu, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3328
container_issue 15
container_start_page 3303
container_title International journal of production research
container_volume 39
creator Dereli, T.
Filiz, I. H.
Baykasoglu, A.
description The determination of optimal cutting parameters, such as the number of passes, depth of cut for each pass, cutting speed and feed, which are applicable for assigned cutting tools, is one of the vital modules in process planning of metal parts, since the economy of machining operations plays an important role in increasing productivity and competitiveness. The present paper introduces a 'system software' developed to optimize the cutting parameters for prismatic parts. The system is mainly based on a powerful artificial intelligence (AI) tool, called genetic algorithms (GAs). It is implemented using C programming language and on a PC. It can be used as standalone system or as the integrated module of a process planning system called OPPS-PRI (Optimized Process Planning System for PRIsmatic parts) that was also developed for prismatic parts and implemented on a vertical machining centre (VMC). With the use of GAs, the impact and power of AI techniques have been reflected on the performance of the optimization system. The methodology of the developed optimization system is illustrated with practical examples throughout the paper.
doi_str_mv 10.1080/00207540110057891
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_26917115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26917115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1a4d25b9cb5ea053dc0e7af5c52ee8e5de50f1ab7457d234272483cedf067f923</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI4-gLuu3FVzaZoOuJHBGwzMRsFdTNOTMdI2NUnR8elNGXeDeDYHzv9_54bQOcGXBFf4CmOKBS8wIRhzUS3IAZoRVpY5r6qXQzSb9DwZ2DE6CeEdp-BVMUOv6yHazn7bfpPpMcYpD8qrDiL4kNk-G7zTEEI2tKrvJ9mZVLOhU9HqyRtDVm-zMUzaBnqYyqrdOG_jWxdO0ZFRbYCz3zxHz3e3T8uHfLW-f1zerHLNBI85UUVDeb3QNQeFOWs0BqEM15wCVMAb4NgQVYuCi4ayggpaVExDY3ApzIKyObrY9U37fowQouxs0NCmrcGNQdJyQQQhPBnJzqi9C8GDkemaTvmtJFhOv5R7v0yM2DG2N8536tP5tpFRbVvnjVe9tmGfkvErJvL6X5L9PfgHDA-OWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26917115</pqid></control><display><type>article</type><title>Optimizing cutting parameters in process planning of prismatic parts by using genetic algorithms</title><source>Business Source Complete</source><source>Taylor &amp; Francis Journals Complete</source><creator>Dereli, T. ; Filiz, I. H. ; Baykasoglu, A.</creator><creatorcontrib>Dereli, T. ; Filiz, I. H. ; Baykasoglu, A.</creatorcontrib><description>The determination of optimal cutting parameters, such as the number of passes, depth of cut for each pass, cutting speed and feed, which are applicable for assigned cutting tools, is one of the vital modules in process planning of metal parts, since the economy of machining operations plays an important role in increasing productivity and competitiveness. The present paper introduces a 'system software' developed to optimize the cutting parameters for prismatic parts. The system is mainly based on a powerful artificial intelligence (AI) tool, called genetic algorithms (GAs). It is implemented using C programming language and on a PC. It can be used as standalone system or as the integrated module of a process planning system called OPPS-PRI (Optimized Process Planning System for PRIsmatic parts) that was also developed for prismatic parts and implemented on a vertical machining centre (VMC). With the use of GAs, the impact and power of AI techniques have been reflected on the performance of the optimization system. The methodology of the developed optimization system is illustrated with practical examples throughout the paper.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540110057891</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><ispartof>International journal of production research, 2001-10, Vol.39 (15), p.3303-3328</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1a4d25b9cb5ea053dc0e7af5c52ee8e5de50f1ab7457d234272483cedf067f923</citedby><cites>FETCH-LOGICAL-c375t-1a4d25b9cb5ea053dc0e7af5c52ee8e5de50f1ab7457d234272483cedf067f923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207540110057891$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207540110057891$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59623,60412</link.rule.ids></links><search><creatorcontrib>Dereli, T.</creatorcontrib><creatorcontrib>Filiz, I. H.</creatorcontrib><creatorcontrib>Baykasoglu, A.</creatorcontrib><title>Optimizing cutting parameters in process planning of prismatic parts by using genetic algorithms</title><title>International journal of production research</title><description>The determination of optimal cutting parameters, such as the number of passes, depth of cut for each pass, cutting speed and feed, which are applicable for assigned cutting tools, is one of the vital modules in process planning of metal parts, since the economy of machining operations plays an important role in increasing productivity and competitiveness. The present paper introduces a 'system software' developed to optimize the cutting parameters for prismatic parts. The system is mainly based on a powerful artificial intelligence (AI) tool, called genetic algorithms (GAs). It is implemented using C programming language and on a PC. It can be used as standalone system or as the integrated module of a process planning system called OPPS-PRI (Optimized Process Planning System for PRIsmatic parts) that was also developed for prismatic parts and implemented on a vertical machining centre (VMC). With the use of GAs, the impact and power of AI techniques have been reflected on the performance of the optimization system. The methodology of the developed optimization system is illustrated with practical examples throughout the paper.</description><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOI4-gLuu3FVzaZoOuJHBGwzMRsFdTNOTMdI2NUnR8elNGXeDeDYHzv9_54bQOcGXBFf4CmOKBS8wIRhzUS3IAZoRVpY5r6qXQzSb9DwZ2DE6CeEdp-BVMUOv6yHazn7bfpPpMcYpD8qrDiL4kNk-G7zTEEI2tKrvJ9mZVLOhU9HqyRtDVm-zMUzaBnqYyqrdOG_jWxdO0ZFRbYCz3zxHz3e3T8uHfLW-f1zerHLNBI85UUVDeb3QNQeFOWs0BqEM15wCVMAb4NgQVYuCi4ayggpaVExDY3ApzIKyObrY9U37fowQouxs0NCmrcGNQdJyQQQhPBnJzqi9C8GDkemaTvmtJFhOv5R7v0yM2DG2N8536tP5tpFRbVvnjVe9tmGfkvErJvL6X5L9PfgHDA-OWA</recordid><startdate>20011015</startdate><enddate>20011015</enddate><creator>Dereli, T.</creator><creator>Filiz, I. H.</creator><creator>Baykasoglu, A.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20011015</creationdate><title>Optimizing cutting parameters in process planning of prismatic parts by using genetic algorithms</title><author>Dereli, T. ; Filiz, I. H. ; Baykasoglu, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1a4d25b9cb5ea053dc0e7af5c52ee8e5de50f1ab7457d234272483cedf067f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dereli, T.</creatorcontrib><creatorcontrib>Filiz, I. H.</creatorcontrib><creatorcontrib>Baykasoglu, A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dereli, T.</au><au>Filiz, I. H.</au><au>Baykasoglu, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing cutting parameters in process planning of prismatic parts by using genetic algorithms</atitle><jtitle>International journal of production research</jtitle><date>2001-10-15</date><risdate>2001</risdate><volume>39</volume><issue>15</issue><spage>3303</spage><epage>3328</epage><pages>3303-3328</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>The determination of optimal cutting parameters, such as the number of passes, depth of cut for each pass, cutting speed and feed, which are applicable for assigned cutting tools, is one of the vital modules in process planning of metal parts, since the economy of machining operations plays an important role in increasing productivity and competitiveness. The present paper introduces a 'system software' developed to optimize the cutting parameters for prismatic parts. The system is mainly based on a powerful artificial intelligence (AI) tool, called genetic algorithms (GAs). It is implemented using C programming language and on a PC. It can be used as standalone system or as the integrated module of a process planning system called OPPS-PRI (Optimized Process Planning System for PRIsmatic parts) that was also developed for prismatic parts and implemented on a vertical machining centre (VMC). With the use of GAs, the impact and power of AI techniques have been reflected on the performance of the optimization system. The methodology of the developed optimization system is illustrated with practical examples throughout the paper.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207540110057891</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2001-10, Vol.39 (15), p.3303-3328
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_miscellaneous_26917115
source Business Source Complete; Taylor & Francis Journals Complete
title Optimizing cutting parameters in process planning of prismatic parts by using genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20cutting%20parameters%20in%20process%20planning%20of%20prismatic%20parts%20by%20using%20genetic%20algorithms&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Dereli,%20T.&rft.date=2001-10-15&rft.volume=39&rft.issue=15&rft.spage=3303&rft.epage=3328&rft.pages=3303-3328&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207540110057891&rft_dat=%3Cproquest_infor%3E26917115%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26917115&rft_id=info:pmid/&rfr_iscdi=true