Large-Scale 1T′-Phase Tungsten Disulfide Atomic Layers Grown by Gas-Source Chemical Vapor Deposition

The control of crystal polymorphism and exploration of metastable, two-dimensional, 1T′-phase, transition-metal dichalcogenides (TMDs) have received considerable research attention. 1T′-phase TMDs are expected to offer various opportunities for the study of basic condensed matter physics and for its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-08, Vol.16 (8), p.13069-13081
Hauptverfasser: Okada, Mitsuhiro, Pu, Jiang, Lin, Yung-Chang, Endo, Takahiko, Okada, Naoya, Chang, Wen-Hsin, Lu, Anh Khoa Augustin, Nakanishi, Takeshi, Shimizu, Tetsuo, Kubo, Toshitaka, Miyata, Yasumitsu, Suenaga, Kazu, Takenobu, Taishi, Yamada, Takatoshi, Irisawa, Toshifumi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13081
container_issue 8
container_start_page 13069
container_title ACS nano
container_volume 16
creator Okada, Mitsuhiro
Pu, Jiang
Lin, Yung-Chang
Endo, Takahiko
Okada, Naoya
Chang, Wen-Hsin
Lu, Anh Khoa Augustin
Nakanishi, Takeshi
Shimizu, Tetsuo
Kubo, Toshitaka
Miyata, Yasumitsu
Suenaga, Kazu
Takenobu, Taishi
Yamada, Takatoshi
Irisawa, Toshifumi
description The control of crystal polymorphism and exploration of metastable, two-dimensional, 1T′-phase, transition-metal dichalcogenides (TMDs) have received considerable research attention. 1T′-phase TMDs are expected to offer various opportunities for the study of basic condensed matter physics and for its use in important applications, such as devices with topological states for quantum computing, low-resistance contact for semiconducting TMDs, energy storage devices, and as hydrogen evolution catalysts. However, due to the high energy difference and phase change barrier between 1T′ and the more stable 2H-phase, there are few methods that can be used to obtain monolayer 1T′-phase TMDs. Here, we report on the chemical vapor deposition (CVD) growth of 1T′-phase WS2 atomic layers from gaseous precursors, i.e., H2S and WF6, with alkali metal assistance. The gaseous nature of the precursors, reducing properties of H2S, and presence of Na+, which acts as a countercation, provided an optimal environment for the growth of 1T′-phase WS2, resulting in the formation of high-quality submillimeter-sized crystals. The crystal structure was characterized by atomic-resolution scanning transmission electron microscopy, and the zigzag chain structure of W atoms, which is characteristic of the 1T′ structure, was clearly observed. Furthermore, the grown 1T′-phase WS2 showed superconductivity with the transition temperature in the 2.8–3.4 K range and large upper critical field anisotropy. Thus, alkali metal assisted gas-source CVD growth is useful for realizing large-scale, high-quality, phase-engineered TMD atomic layers via a bottom-up synthesis.
doi_str_mv 10.1021/acsnano.2c05699
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2691460360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691460360</sourcerecordid><originalsourceid>FETCH-LOGICAL-a420t-e58248b702a1ba75086bfb90deb056dbc2d2ec391dc2416649aec1b5f942a4543</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhhdRsFbPXvcoSNrdTbJJjqXVKgQUWsXbMtlM2pQ0W3cTpDefyUfySVxp8SYMzMD8_zDfT8g1ZyPOBB-Ddi20ZiQ0i2WWnZABz0IZsFS-nf7NMT8nF85tGIuTNJEDUuVgVxgsNDRI-fL78yt4XoNDuuzbleuwpbPa9U1Vl0gnndnWmuawR-vo3JqPlhZ7OgcXLExvNdLpGr0CGvoKO2PpDHfG1V1t2ktyVkHj8OrYh-Tl_m45fQjyp_njdJIHEAnWBRinIkqLhAngBSSxf76oioyVWHiostCiFKjDjJdaRFzKKAPUvIirLBIQxVE4JDeHuztr3nt0ndrWTmPTQIumd0rIjEeShb6GZHyQamucs1ipna23YPeKM_WbqDomqo6JesftweEXauOJW4_yr_oHA3F6uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691460360</pqid></control><display><type>article</type><title>Large-Scale 1T′-Phase Tungsten Disulfide Atomic Layers Grown by Gas-Source Chemical Vapor Deposition</title><source>ACS Publications</source><creator>Okada, Mitsuhiro ; Pu, Jiang ; Lin, Yung-Chang ; Endo, Takahiko ; Okada, Naoya ; Chang, Wen-Hsin ; Lu, Anh Khoa Augustin ; Nakanishi, Takeshi ; Shimizu, Tetsuo ; Kubo, Toshitaka ; Miyata, Yasumitsu ; Suenaga, Kazu ; Takenobu, Taishi ; Yamada, Takatoshi ; Irisawa, Toshifumi</creator><creatorcontrib>Okada, Mitsuhiro ; Pu, Jiang ; Lin, Yung-Chang ; Endo, Takahiko ; Okada, Naoya ; Chang, Wen-Hsin ; Lu, Anh Khoa Augustin ; Nakanishi, Takeshi ; Shimizu, Tetsuo ; Kubo, Toshitaka ; Miyata, Yasumitsu ; Suenaga, Kazu ; Takenobu, Taishi ; Yamada, Takatoshi ; Irisawa, Toshifumi</creatorcontrib><description>The control of crystal polymorphism and exploration of metastable, two-dimensional, 1T′-phase, transition-metal dichalcogenides (TMDs) have received considerable research attention. 1T′-phase TMDs are expected to offer various opportunities for the study of basic condensed matter physics and for its use in important applications, such as devices with topological states for quantum computing, low-resistance contact for semiconducting TMDs, energy storage devices, and as hydrogen evolution catalysts. However, due to the high energy difference and phase change barrier between 1T′ and the more stable 2H-phase, there are few methods that can be used to obtain monolayer 1T′-phase TMDs. Here, we report on the chemical vapor deposition (CVD) growth of 1T′-phase WS2 atomic layers from gaseous precursors, i.e., H2S and WF6, with alkali metal assistance. The gaseous nature of the precursors, reducing properties of H2S, and presence of Na+, which acts as a countercation, provided an optimal environment for the growth of 1T′-phase WS2, resulting in the formation of high-quality submillimeter-sized crystals. The crystal structure was characterized by atomic-resolution scanning transmission electron microscopy, and the zigzag chain structure of W atoms, which is characteristic of the 1T′ structure, was clearly observed. Furthermore, the grown 1T′-phase WS2 showed superconductivity with the transition temperature in the 2.8–3.4 K range and large upper critical field anisotropy. Thus, alkali metal assisted gas-source CVD growth is useful for realizing large-scale, high-quality, phase-engineered TMD atomic layers via a bottom-up synthesis.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c05699</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2022-08, Vol.16 (8), p.13069-13081</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a420t-e58248b702a1ba75086bfb90deb056dbc2d2ec391dc2416649aec1b5f942a4543</citedby><cites>FETCH-LOGICAL-a420t-e58248b702a1ba75086bfb90deb056dbc2d2ec391dc2416649aec1b5f942a4543</cites><orcidid>0000-0002-6123-1094 ; 0000-0002-1676-2072 ; 0000-0001-7313-6396 ; 0000-0003-4702-0933 ; 0000-0002-9733-5119 ; 0000-0002-6520-6048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c05699$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c05699$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids></links><search><creatorcontrib>Okada, Mitsuhiro</creatorcontrib><creatorcontrib>Pu, Jiang</creatorcontrib><creatorcontrib>Lin, Yung-Chang</creatorcontrib><creatorcontrib>Endo, Takahiko</creatorcontrib><creatorcontrib>Okada, Naoya</creatorcontrib><creatorcontrib>Chang, Wen-Hsin</creatorcontrib><creatorcontrib>Lu, Anh Khoa Augustin</creatorcontrib><creatorcontrib>Nakanishi, Takeshi</creatorcontrib><creatorcontrib>Shimizu, Tetsuo</creatorcontrib><creatorcontrib>Kubo, Toshitaka</creatorcontrib><creatorcontrib>Miyata, Yasumitsu</creatorcontrib><creatorcontrib>Suenaga, Kazu</creatorcontrib><creatorcontrib>Takenobu, Taishi</creatorcontrib><creatorcontrib>Yamada, Takatoshi</creatorcontrib><creatorcontrib>Irisawa, Toshifumi</creatorcontrib><title>Large-Scale 1T′-Phase Tungsten Disulfide Atomic Layers Grown by Gas-Source Chemical Vapor Deposition</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The control of crystal polymorphism and exploration of metastable, two-dimensional, 1T′-phase, transition-metal dichalcogenides (TMDs) have received considerable research attention. 1T′-phase TMDs are expected to offer various opportunities for the study of basic condensed matter physics and for its use in important applications, such as devices with topological states for quantum computing, low-resistance contact for semiconducting TMDs, energy storage devices, and as hydrogen evolution catalysts. However, due to the high energy difference and phase change barrier between 1T′ and the more stable 2H-phase, there are few methods that can be used to obtain monolayer 1T′-phase TMDs. Here, we report on the chemical vapor deposition (CVD) growth of 1T′-phase WS2 atomic layers from gaseous precursors, i.e., H2S and WF6, with alkali metal assistance. The gaseous nature of the precursors, reducing properties of H2S, and presence of Na+, which acts as a countercation, provided an optimal environment for the growth of 1T′-phase WS2, resulting in the formation of high-quality submillimeter-sized crystals. The crystal structure was characterized by atomic-resolution scanning transmission electron microscopy, and the zigzag chain structure of W atoms, which is characteristic of the 1T′ structure, was clearly observed. Furthermore, the grown 1T′-phase WS2 showed superconductivity with the transition temperature in the 2.8–3.4 K range and large upper critical field anisotropy. Thus, alkali metal assisted gas-source CVD growth is useful for realizing large-scale, high-quality, phase-engineered TMD atomic layers via a bottom-up synthesis.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKw0AQhhdRsFbPXvcoSNrdTbJJjqXVKgQUWsXbMtlM2pQ0W3cTpDefyUfySVxp8SYMzMD8_zDfT8g1ZyPOBB-Ddi20ZiQ0i2WWnZABz0IZsFS-nf7NMT8nF85tGIuTNJEDUuVgVxgsNDRI-fL78yt4XoNDuuzbleuwpbPa9U1Vl0gnndnWmuawR-vo3JqPlhZ7OgcXLExvNdLpGr0CGvoKO2PpDHfG1V1t2ktyVkHj8OrYh-Tl_m45fQjyp_njdJIHEAnWBRinIkqLhAngBSSxf76oioyVWHiostCiFKjDjJdaRFzKKAPUvIirLBIQxVE4JDeHuztr3nt0ndrWTmPTQIumd0rIjEeShb6GZHyQamucs1ipna23YPeKM_WbqDomqo6JesftweEXauOJW4_yr_oHA3F6uQ</recordid><startdate>20220823</startdate><enddate>20220823</enddate><creator>Okada, Mitsuhiro</creator><creator>Pu, Jiang</creator><creator>Lin, Yung-Chang</creator><creator>Endo, Takahiko</creator><creator>Okada, Naoya</creator><creator>Chang, Wen-Hsin</creator><creator>Lu, Anh Khoa Augustin</creator><creator>Nakanishi, Takeshi</creator><creator>Shimizu, Tetsuo</creator><creator>Kubo, Toshitaka</creator><creator>Miyata, Yasumitsu</creator><creator>Suenaga, Kazu</creator><creator>Takenobu, Taishi</creator><creator>Yamada, Takatoshi</creator><creator>Irisawa, Toshifumi</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6123-1094</orcidid><orcidid>https://orcid.org/0000-0002-1676-2072</orcidid><orcidid>https://orcid.org/0000-0001-7313-6396</orcidid><orcidid>https://orcid.org/0000-0003-4702-0933</orcidid><orcidid>https://orcid.org/0000-0002-9733-5119</orcidid><orcidid>https://orcid.org/0000-0002-6520-6048</orcidid></search><sort><creationdate>20220823</creationdate><title>Large-Scale 1T′-Phase Tungsten Disulfide Atomic Layers Grown by Gas-Source Chemical Vapor Deposition</title><author>Okada, Mitsuhiro ; Pu, Jiang ; Lin, Yung-Chang ; Endo, Takahiko ; Okada, Naoya ; Chang, Wen-Hsin ; Lu, Anh Khoa Augustin ; Nakanishi, Takeshi ; Shimizu, Tetsuo ; Kubo, Toshitaka ; Miyata, Yasumitsu ; Suenaga, Kazu ; Takenobu, Taishi ; Yamada, Takatoshi ; Irisawa, Toshifumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a420t-e58248b702a1ba75086bfb90deb056dbc2d2ec391dc2416649aec1b5f942a4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Mitsuhiro</creatorcontrib><creatorcontrib>Pu, Jiang</creatorcontrib><creatorcontrib>Lin, Yung-Chang</creatorcontrib><creatorcontrib>Endo, Takahiko</creatorcontrib><creatorcontrib>Okada, Naoya</creatorcontrib><creatorcontrib>Chang, Wen-Hsin</creatorcontrib><creatorcontrib>Lu, Anh Khoa Augustin</creatorcontrib><creatorcontrib>Nakanishi, Takeshi</creatorcontrib><creatorcontrib>Shimizu, Tetsuo</creatorcontrib><creatorcontrib>Kubo, Toshitaka</creatorcontrib><creatorcontrib>Miyata, Yasumitsu</creatorcontrib><creatorcontrib>Suenaga, Kazu</creatorcontrib><creatorcontrib>Takenobu, Taishi</creatorcontrib><creatorcontrib>Yamada, Takatoshi</creatorcontrib><creatorcontrib>Irisawa, Toshifumi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Mitsuhiro</au><au>Pu, Jiang</au><au>Lin, Yung-Chang</au><au>Endo, Takahiko</au><au>Okada, Naoya</au><au>Chang, Wen-Hsin</au><au>Lu, Anh Khoa Augustin</au><au>Nakanishi, Takeshi</au><au>Shimizu, Tetsuo</au><au>Kubo, Toshitaka</au><au>Miyata, Yasumitsu</au><au>Suenaga, Kazu</au><au>Takenobu, Taishi</au><au>Yamada, Takatoshi</au><au>Irisawa, Toshifumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale 1T′-Phase Tungsten Disulfide Atomic Layers Grown by Gas-Source Chemical Vapor Deposition</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-08-23</date><risdate>2022</risdate><volume>16</volume><issue>8</issue><spage>13069</spage><epage>13081</epage><pages>13069-13081</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The control of crystal polymorphism and exploration of metastable, two-dimensional, 1T′-phase, transition-metal dichalcogenides (TMDs) have received considerable research attention. 1T′-phase TMDs are expected to offer various opportunities for the study of basic condensed matter physics and for its use in important applications, such as devices with topological states for quantum computing, low-resistance contact for semiconducting TMDs, energy storage devices, and as hydrogen evolution catalysts. However, due to the high energy difference and phase change barrier between 1T′ and the more stable 2H-phase, there are few methods that can be used to obtain monolayer 1T′-phase TMDs. Here, we report on the chemical vapor deposition (CVD) growth of 1T′-phase WS2 atomic layers from gaseous precursors, i.e., H2S and WF6, with alkali metal assistance. The gaseous nature of the precursors, reducing properties of H2S, and presence of Na+, which acts as a countercation, provided an optimal environment for the growth of 1T′-phase WS2, resulting in the formation of high-quality submillimeter-sized crystals. The crystal structure was characterized by atomic-resolution scanning transmission electron microscopy, and the zigzag chain structure of W atoms, which is characteristic of the 1T′ structure, was clearly observed. Furthermore, the grown 1T′-phase WS2 showed superconductivity with the transition temperature in the 2.8–3.4 K range and large upper critical field anisotropy. Thus, alkali metal assisted gas-source CVD growth is useful for realizing large-scale, high-quality, phase-engineered TMD atomic layers via a bottom-up synthesis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.2c05699</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6123-1094</orcidid><orcidid>https://orcid.org/0000-0002-1676-2072</orcidid><orcidid>https://orcid.org/0000-0001-7313-6396</orcidid><orcidid>https://orcid.org/0000-0003-4702-0933</orcidid><orcidid>https://orcid.org/0000-0002-9733-5119</orcidid><orcidid>https://orcid.org/0000-0002-6520-6048</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-08, Vol.16 (8), p.13069-13081
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2691460360
source ACS Publications
title Large-Scale 1T′-Phase Tungsten Disulfide Atomic Layers Grown by Gas-Source Chemical Vapor Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%201T%E2%80%B2-Phase%20Tungsten%20Disulfide%20Atomic%20Layers%20Grown%20by%20Gas-Source%20Chemical%20Vapor%20Deposition&rft.jtitle=ACS%20nano&rft.au=Okada,%20Mitsuhiro&rft.date=2022-08-23&rft.volume=16&rft.issue=8&rft.spage=13069&rft.epage=13081&rft.pages=13069-13081&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c05699&rft_dat=%3Cproquest_cross%3E2691460360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691460360&rft_id=info:pmid/&rfr_iscdi=true