Development of a machine learning model for the prediction of the short-term mortality in patients in the intensive care unit
The aim of this study was to develop and evaluate a machine learning model that predicts short-term mortality in the intensive care unit using the trends of four easy-to-collect vital signs. The primary training cohort included 1968 patients at the Veterans Health Service Medical Center. The externa...
Gespeichert in:
Veröffentlicht in: | Journal of critical care 2022-10, Vol.71, p.154106-154106, Article 154106 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154106 |
---|---|
container_issue | |
container_start_page | 154106 |
container_title | Journal of critical care |
container_volume | 71 |
creator | Yang, Jaeyoung Lim, Hong-Gook Park, Wonhyeong Kim, Dongseok Yoon, Jin Sun Lee, Sang-Min Kim, Kwangsoo |
description | The aim of this study was to develop and evaluate a machine learning model that predicts short-term mortality in the intensive care unit using the trends of four easy-to-collect vital signs.
The primary training cohort included 1968 patients at the Veterans Health Service Medical Center. The external validation cohort comprised 409 patients at Seoul National University Hospital. Datasets of heart rate, systolic blood pressure, diastolic blood pressure, and peripheral capillary oxygen saturation (SpO2) measured every hour for 10 h were used. The performances of mortality prediction models generated using five machine learning algorithms, Random Forest (RF), XGboost, perceptron, convolutional neural network, and Long Short-Term Memory, were calculated and compared using area under the receiver operating characteristic curve (AUROC) values and an external validation dataset.
The machine learning model generated using the RF algorithm showed the best performance. Its AUROC was 0.922, which is much better than the 0.8408 of the Acute Physiology and Chronic Health Evaluation II. The machine learning model developed using SpO2 showed the best performance (AUROC, 0.89).
This simple yet powerful new mortality prediction model could be useful for early detection of probable mortality and appropriate medical intervention, especially in rapidly deteriorating patients. |
doi_str_mv | 10.1016/j.jcrc.2022.154106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2691054430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0883944122001356</els_id><sourcerecordid>2691054430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-bddbe75e89b440ee4a8939e9390a6f86db52907b247c1a314941e12ff8e3c7df3</originalsourceid><addsrcrecordid>eNp9kU1rHDEMhk1ooNtN_kBPhlx6mY1le76gl7JN0sBCL83ZeDyarIcZe2J7F3Lof6-H7amHHoSEeF4h6SXkM7AdMKjux91ogtlxxvkOSgmsuiIbKMu6aCooP5ANaxpRtFLCR_IpxpExqIUoN-T3dzzj5JcZXaJ-oJrO2hytQzqhDs66Vzr7Hic6-EDTEekSsLcmWe9WfO3Eow-pSBjmjIakJ5veqXV00cnmqXGtV866hC7aM1KjA9KTs-mGXA96inj7N2_Jy-PDr_2P4vDz6Xn_7VAYUUEqur7vsC6xaTspGaLUTStazMF0NTRV35W8ZXXHZW1AC5CtBAQ-DA0KU_eD2JIvl7lL8G8njEnNNhqcJu3Qn6LiVQuslFKwjN79g47-FFzeTvGa1RxAiiZT_EKZ4GMMOKgl2FmHdwVMrY6oUa2OqNURdXEki75eRJhPPVsMKpr8IZMfGtAk1Xv7P_kfMzCVhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707211438</pqid></control><display><type>article</type><title>Development of a machine learning model for the prediction of the short-term mortality in patients in the intensive care unit</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>ProQuest Central UK/Ireland</source><creator>Yang, Jaeyoung ; Lim, Hong-Gook ; Park, Wonhyeong ; Kim, Dongseok ; Yoon, Jin Sun ; Lee, Sang-Min ; Kim, Kwangsoo</creator><creatorcontrib>Yang, Jaeyoung ; Lim, Hong-Gook ; Park, Wonhyeong ; Kim, Dongseok ; Yoon, Jin Sun ; Lee, Sang-Min ; Kim, Kwangsoo</creatorcontrib><description>The aim of this study was to develop and evaluate a machine learning model that predicts short-term mortality in the intensive care unit using the trends of four easy-to-collect vital signs.
The primary training cohort included 1968 patients at the Veterans Health Service Medical Center. The external validation cohort comprised 409 patients at Seoul National University Hospital. Datasets of heart rate, systolic blood pressure, diastolic blood pressure, and peripheral capillary oxygen saturation (SpO2) measured every hour for 10 h were used. The performances of mortality prediction models generated using five machine learning algorithms, Random Forest (RF), XGboost, perceptron, convolutional neural network, and Long Short-Term Memory, were calculated and compared using area under the receiver operating characteristic curve (AUROC) values and an external validation dataset.
The machine learning model generated using the RF algorithm showed the best performance. Its AUROC was 0.922, which is much better than the 0.8408 of the Acute Physiology and Chronic Health Evaluation II. The machine learning model developed using SpO2 showed the best performance (AUROC, 0.89).
This simple yet powerful new mortality prediction model could be useful for early detection of probable mortality and appropriate medical intervention, especially in rapidly deteriorating patients.</description><identifier>ISSN: 0883-9441</identifier><identifier>EISSN: 1557-8615</identifier><identifier>DOI: 10.1016/j.jcrc.2022.154106</identifier><language>eng</language><publisher>Philadelphia: Elsevier Inc</publisher><subject>Algorithms ; Blood pressure ; Datasets ; Electronic health records ; Intensive care ; Intensive care units ; Machine learning ; Medical prognosis ; Mortality ; Neural networks ; Patients ; Performance evaluation ; Physiology ; Prognosis ; Risk assessment ; Signs ; Vital signs</subject><ispartof>Journal of critical care, 2022-10, Vol.71, p.154106-154106, Article 154106</ispartof><rights>2022 Elsevier Inc.</rights><rights>2022. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-bddbe75e89b440ee4a8939e9390a6f86db52907b247c1a314941e12ff8e3c7df3</citedby><cites>FETCH-LOGICAL-c361t-bddbe75e89b440ee4a8939e9390a6f86db52907b247c1a314941e12ff8e3c7df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2707211438?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978,64366,64368,64370,72220</link.rule.ids></links><search><creatorcontrib>Yang, Jaeyoung</creatorcontrib><creatorcontrib>Lim, Hong-Gook</creatorcontrib><creatorcontrib>Park, Wonhyeong</creatorcontrib><creatorcontrib>Kim, Dongseok</creatorcontrib><creatorcontrib>Yoon, Jin Sun</creatorcontrib><creatorcontrib>Lee, Sang-Min</creatorcontrib><creatorcontrib>Kim, Kwangsoo</creatorcontrib><title>Development of a machine learning model for the prediction of the short-term mortality in patients in the intensive care unit</title><title>Journal of critical care</title><description>The aim of this study was to develop and evaluate a machine learning model that predicts short-term mortality in the intensive care unit using the trends of four easy-to-collect vital signs.
The primary training cohort included 1968 patients at the Veterans Health Service Medical Center. The external validation cohort comprised 409 patients at Seoul National University Hospital. Datasets of heart rate, systolic blood pressure, diastolic blood pressure, and peripheral capillary oxygen saturation (SpO2) measured every hour for 10 h were used. The performances of mortality prediction models generated using five machine learning algorithms, Random Forest (RF), XGboost, perceptron, convolutional neural network, and Long Short-Term Memory, were calculated and compared using area under the receiver operating characteristic curve (AUROC) values and an external validation dataset.
The machine learning model generated using the RF algorithm showed the best performance. Its AUROC was 0.922, which is much better than the 0.8408 of the Acute Physiology and Chronic Health Evaluation II. The machine learning model developed using SpO2 showed the best performance (AUROC, 0.89).
This simple yet powerful new mortality prediction model could be useful for early detection of probable mortality and appropriate medical intervention, especially in rapidly deteriorating patients.</description><subject>Algorithms</subject><subject>Blood pressure</subject><subject>Datasets</subject><subject>Electronic health records</subject><subject>Intensive care</subject><subject>Intensive care units</subject><subject>Machine learning</subject><subject>Medical prognosis</subject><subject>Mortality</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Performance evaluation</subject><subject>Physiology</subject><subject>Prognosis</subject><subject>Risk assessment</subject><subject>Signs</subject><subject>Vital signs</subject><issn>0883-9441</issn><issn>1557-8615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1rHDEMhk1ooNtN_kBPhlx6mY1le76gl7JN0sBCL83ZeDyarIcZe2J7F3Lof6-H7amHHoSEeF4h6SXkM7AdMKjux91ogtlxxvkOSgmsuiIbKMu6aCooP5ANaxpRtFLCR_IpxpExqIUoN-T3dzzj5JcZXaJ-oJrO2hytQzqhDs66Vzr7Hic6-EDTEekSsLcmWe9WfO3Eow-pSBjmjIakJ5veqXV00cnmqXGtV866hC7aM1KjA9KTs-mGXA96inj7N2_Jy-PDr_2P4vDz6Xn_7VAYUUEqur7vsC6xaTspGaLUTStazMF0NTRV35W8ZXXHZW1AC5CtBAQ-DA0KU_eD2JIvl7lL8G8njEnNNhqcJu3Qn6LiVQuslFKwjN79g47-FFzeTvGa1RxAiiZT_EKZ4GMMOKgl2FmHdwVMrY6oUa2OqNURdXEki75eRJhPPVsMKpr8IZMfGtAk1Xv7P_kfMzCVhQ</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Yang, Jaeyoung</creator><creator>Lim, Hong-Gook</creator><creator>Park, Wonhyeong</creator><creator>Kim, Dongseok</creator><creator>Yoon, Jin Sun</creator><creator>Lee, Sang-Min</creator><creator>Kim, Kwangsoo</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202210</creationdate><title>Development of a machine learning model for the prediction of the short-term mortality in patients in the intensive care unit</title><author>Yang, Jaeyoung ; Lim, Hong-Gook ; Park, Wonhyeong ; Kim, Dongseok ; Yoon, Jin Sun ; Lee, Sang-Min ; Kim, Kwangsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-bddbe75e89b440ee4a8939e9390a6f86db52907b247c1a314941e12ff8e3c7df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Blood pressure</topic><topic>Datasets</topic><topic>Electronic health records</topic><topic>Intensive care</topic><topic>Intensive care units</topic><topic>Machine learning</topic><topic>Medical prognosis</topic><topic>Mortality</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Performance evaluation</topic><topic>Physiology</topic><topic>Prognosis</topic><topic>Risk assessment</topic><topic>Signs</topic><topic>Vital signs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jaeyoung</creatorcontrib><creatorcontrib>Lim, Hong-Gook</creatorcontrib><creatorcontrib>Park, Wonhyeong</creatorcontrib><creatorcontrib>Kim, Dongseok</creatorcontrib><creatorcontrib>Yoon, Jin Sun</creatorcontrib><creatorcontrib>Lee, Sang-Min</creatorcontrib><creatorcontrib>Kim, Kwangsoo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>British Nursing Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of critical care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jaeyoung</au><au>Lim, Hong-Gook</au><au>Park, Wonhyeong</au><au>Kim, Dongseok</au><au>Yoon, Jin Sun</au><au>Lee, Sang-Min</au><au>Kim, Kwangsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a machine learning model for the prediction of the short-term mortality in patients in the intensive care unit</atitle><jtitle>Journal of critical care</jtitle><date>2022-10</date><risdate>2022</risdate><volume>71</volume><spage>154106</spage><epage>154106</epage><pages>154106-154106</pages><artnum>154106</artnum><issn>0883-9441</issn><eissn>1557-8615</eissn><abstract>The aim of this study was to develop and evaluate a machine learning model that predicts short-term mortality in the intensive care unit using the trends of four easy-to-collect vital signs.
The primary training cohort included 1968 patients at the Veterans Health Service Medical Center. The external validation cohort comprised 409 patients at Seoul National University Hospital. Datasets of heart rate, systolic blood pressure, diastolic blood pressure, and peripheral capillary oxygen saturation (SpO2) measured every hour for 10 h were used. The performances of mortality prediction models generated using five machine learning algorithms, Random Forest (RF), XGboost, perceptron, convolutional neural network, and Long Short-Term Memory, were calculated and compared using area under the receiver operating characteristic curve (AUROC) values and an external validation dataset.
The machine learning model generated using the RF algorithm showed the best performance. Its AUROC was 0.922, which is much better than the 0.8408 of the Acute Physiology and Chronic Health Evaluation II. The machine learning model developed using SpO2 showed the best performance (AUROC, 0.89).
This simple yet powerful new mortality prediction model could be useful for early detection of probable mortality and appropriate medical intervention, especially in rapidly deteriorating patients.</abstract><cop>Philadelphia</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcrc.2022.154106</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-9441 |
ispartof | Journal of critical care, 2022-10, Vol.71, p.154106-154106, Article 154106 |
issn | 0883-9441 1557-8615 |
language | eng |
recordid | cdi_proquest_miscellaneous_2691054430 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; ProQuest Central UK/Ireland |
subjects | Algorithms Blood pressure Datasets Electronic health records Intensive care Intensive care units Machine learning Medical prognosis Mortality Neural networks Patients Performance evaluation Physiology Prognosis Risk assessment Signs Vital signs |
title | Development of a machine learning model for the prediction of the short-term mortality in patients in the intensive care unit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20machine%20learning%20model%20for%20the%20prediction%20of%20the%20short-term%20mortality%20in%20patients%20in%20the%20intensive%20care%20unit&rft.jtitle=Journal%20of%20critical%20care&rft.au=Yang,%20Jaeyoung&rft.date=2022-10&rft.volume=71&rft.spage=154106&rft.epage=154106&rft.pages=154106-154106&rft.artnum=154106&rft.issn=0883-9441&rft.eissn=1557-8615&rft_id=info:doi/10.1016/j.jcrc.2022.154106&rft_dat=%3Cproquest_cross%3E2691054430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707211438&rft_id=info:pmid/&rft_els_id=S0883944122001356&rfr_iscdi=true |