Increasing the throughput of sensitive proteomics by plexDIA
Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2023-01, Vol.41 (1), p.50-59 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 50 |
container_title | Nature biotechnology |
container_volume | 41 |
creator | Derks, Jason Leduc, Andrew Wallmann, Georg Huffman, R. Gray Willetts, Matthew Khan, Saad Specht, Harrison Ralser, Markus Demichev, Vadim Slavov, Nikolai |
description | Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for simultaneously multiplexing the analysis of peptides and samples. Multiplexed analysis with plexDIA increases throughput multiplicatively with the number of labels without reducing proteome coverage or quantitative accuracy. By using three-plex non-isobaric mass tags, plexDIA enables quantification of threefold more protein ratios among nanogram-level samples. Using 1-hour active gradients, plexDIA quantified ~8,000 proteins in each sample of labeled three-plex sets and increased data completeness, reducing missing data more than twofold across samples. Applied to single human cells, plexDIA quantified ~1,000 proteins per cell and achieved 98% data completeness within a plexDIA set while using ~5 minutes of active chromatography per cell. These results establish a general framework for increasing the throughput of sensitive and quantitative protein analysis.
Proteomics of small sample sizes using data-independent acquisition methods achieves higher throughput with multiplexing. |
doi_str_mv | 10.1038/s41587-022-01389-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2691052532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691052532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-a78cf167580505765fab77481d46cd576a8fd12c63fc08e85f292fcd86a9ad6f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzmmQmJxlwU-qtUHCj65BmknbKXGoyY-3bmzpVwYWQkJDznT-HD6Fzgq8JTsSNTwkTPMaUxpgkIos3B2hIWAoxgQwOwx3vyoTBAJ14v8IYQwpwjAYJE2EJMkS301o7o3xRL6J2acJ2TbdYrrs2amzkTe2Ltng30do1rWmqQvtovo3Wpfm4m45P0ZFVpTdn-3OEXh_uXyZP8ez5cToZz2KdCtbGigttCXAmMMOMA7NqznkqSJ6CzsODEjYnVENiNRZGMEszanUuQGUqB5uM0FWfG6Z464xvZVV4bcpS1abpvKSQEcwoS2hAL_-gq6ZzdZhOUg7AMs44CRTtKe0a752xcu2KSrmtJFju3MrerQxu5ZdbuQlNF_vobl6Z_KflW2YAkh7woVQvjPv9-5_YT4_4hCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766597571</pqid></control><display><type>article</type><title>Increasing the throughput of sensitive proteomics by plexDIA</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Derks, Jason ; Leduc, Andrew ; Wallmann, Georg ; Huffman, R. Gray ; Willetts, Matthew ; Khan, Saad ; Specht, Harrison ; Ralser, Markus ; Demichev, Vadim ; Slavov, Nikolai</creator><creatorcontrib>Derks, Jason ; Leduc, Andrew ; Wallmann, Georg ; Huffman, R. Gray ; Willetts, Matthew ; Khan, Saad ; Specht, Harrison ; Ralser, Markus ; Demichev, Vadim ; Slavov, Nikolai</creatorcontrib><description>Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for simultaneously multiplexing the analysis of peptides and samples. Multiplexed analysis with plexDIA increases throughput multiplicatively with the number of labels without reducing proteome coverage or quantitative accuracy. By using three-plex non-isobaric mass tags, plexDIA enables quantification of threefold more protein ratios among nanogram-level samples. Using 1-hour active gradients, plexDIA quantified ~8,000 proteins in each sample of labeled three-plex sets and increased data completeness, reducing missing data more than twofold across samples. Applied to single human cells, plexDIA quantified ~1,000 proteins per cell and achieved 98% data completeness within a plexDIA set while using ~5 minutes of active chromatography per cell. These results establish a general framework for increasing the throughput of sensitive and quantitative protein analysis.
Proteomics of small sample sizes using data-independent acquisition methods achieves higher throughput with multiplexing.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-022-01389-w</identifier><identifier>PMID: 35835881</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/2067 ; 631/1647/296 ; 631/553/2694 ; Agriculture ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Chromatography, Liquid - methods ; Completeness ; Computer applications ; Humans ; Life Sciences ; Mass spectrometry ; Mass Spectrometry - methods ; Mass spectroscopy ; Missing data ; Multiplexing ; Peptides ; Peptides - analysis ; Proteins ; Proteome - metabolism ; Proteomes ; Proteomics ; Proteomics - methods</subject><ispartof>Nature biotechnology, 2023-01, Vol.41 (1), p.50-59</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-a78cf167580505765fab77481d46cd576a8fd12c63fc08e85f292fcd86a9ad6f3</citedby><cites>FETCH-LOGICAL-c485t-a78cf167580505765fab77481d46cd576a8fd12c63fc08e85f292fcd86a9ad6f3</cites><orcidid>0000-0002-2424-9412 ; 0000-0001-9727-9105 ; 0000-0003-2035-1820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35835881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Derks, Jason</creatorcontrib><creatorcontrib>Leduc, Andrew</creatorcontrib><creatorcontrib>Wallmann, Georg</creatorcontrib><creatorcontrib>Huffman, R. Gray</creatorcontrib><creatorcontrib>Willetts, Matthew</creatorcontrib><creatorcontrib>Khan, Saad</creatorcontrib><creatorcontrib>Specht, Harrison</creatorcontrib><creatorcontrib>Ralser, Markus</creatorcontrib><creatorcontrib>Demichev, Vadim</creatorcontrib><creatorcontrib>Slavov, Nikolai</creatorcontrib><title>Increasing the throughput of sensitive proteomics by plexDIA</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for simultaneously multiplexing the analysis of peptides and samples. Multiplexed analysis with plexDIA increases throughput multiplicatively with the number of labels without reducing proteome coverage or quantitative accuracy. By using three-plex non-isobaric mass tags, plexDIA enables quantification of threefold more protein ratios among nanogram-level samples. Using 1-hour active gradients, plexDIA quantified ~8,000 proteins in each sample of labeled three-plex sets and increased data completeness, reducing missing data more than twofold across samples. Applied to single human cells, plexDIA quantified ~1,000 proteins per cell and achieved 98% data completeness within a plexDIA set while using ~5 minutes of active chromatography per cell. These results establish a general framework for increasing the throughput of sensitive and quantitative protein analysis.
Proteomics of small sample sizes using data-independent acquisition methods achieves higher throughput with multiplexing.</description><subject>631/1647/2067</subject><subject>631/1647/296</subject><subject>631/553/2694</subject><subject>Agriculture</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chromatography, Liquid - methods</subject><subject>Completeness</subject><subject>Computer applications</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mass spectroscopy</subject><subject>Missing data</subject><subject>Multiplexing</subject><subject>Peptides</subject><subject>Peptides - analysis</subject><subject>Proteins</subject><subject>Proteome - metabolism</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzmmQmJxlwU-qtUHCj65BmknbKXGoyY-3bmzpVwYWQkJDznT-HD6Fzgq8JTsSNTwkTPMaUxpgkIos3B2hIWAoxgQwOwx3vyoTBAJ14v8IYQwpwjAYJE2EJMkS301o7o3xRL6J2acJ2TbdYrrs2amzkTe2Ltng30do1rWmqQvtovo3Wpfm4m45P0ZFVpTdn-3OEXh_uXyZP8ez5cToZz2KdCtbGigttCXAmMMOMA7NqznkqSJ6CzsODEjYnVENiNRZGMEszanUuQGUqB5uM0FWfG6Z464xvZVV4bcpS1abpvKSQEcwoS2hAL_-gq6ZzdZhOUg7AMs44CRTtKe0a752xcu2KSrmtJFju3MrerQxu5ZdbuQlNF_vobl6Z_KflW2YAkh7woVQvjPv9-5_YT4_4hCI</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Derks, Jason</creator><creator>Leduc, Andrew</creator><creator>Wallmann, Georg</creator><creator>Huffman, R. Gray</creator><creator>Willetts, Matthew</creator><creator>Khan, Saad</creator><creator>Specht, Harrison</creator><creator>Ralser, Markus</creator><creator>Demichev, Vadim</creator><creator>Slavov, Nikolai</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2424-9412</orcidid><orcidid>https://orcid.org/0000-0001-9727-9105</orcidid><orcidid>https://orcid.org/0000-0003-2035-1820</orcidid></search><sort><creationdate>20230101</creationdate><title>Increasing the throughput of sensitive proteomics by plexDIA</title><author>Derks, Jason ; Leduc, Andrew ; Wallmann, Georg ; Huffman, R. Gray ; Willetts, Matthew ; Khan, Saad ; Specht, Harrison ; Ralser, Markus ; Demichev, Vadim ; Slavov, Nikolai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-a78cf167580505765fab77481d46cd576a8fd12c63fc08e85f292fcd86a9ad6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/1647/2067</topic><topic>631/1647/296</topic><topic>631/553/2694</topic><topic>Agriculture</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chromatography, Liquid - methods</topic><topic>Completeness</topic><topic>Computer applications</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mass spectroscopy</topic><topic>Missing data</topic><topic>Multiplexing</topic><topic>Peptides</topic><topic>Peptides - analysis</topic><topic>Proteins</topic><topic>Proteome - metabolism</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derks, Jason</creatorcontrib><creatorcontrib>Leduc, Andrew</creatorcontrib><creatorcontrib>Wallmann, Georg</creatorcontrib><creatorcontrib>Huffman, R. Gray</creatorcontrib><creatorcontrib>Willetts, Matthew</creatorcontrib><creatorcontrib>Khan, Saad</creatorcontrib><creatorcontrib>Specht, Harrison</creatorcontrib><creatorcontrib>Ralser, Markus</creatorcontrib><creatorcontrib>Demichev, Vadim</creatorcontrib><creatorcontrib>Slavov, Nikolai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derks, Jason</au><au>Leduc, Andrew</au><au>Wallmann, Georg</au><au>Huffman, R. Gray</au><au>Willetts, Matthew</au><au>Khan, Saad</au><au>Specht, Harrison</au><au>Ralser, Markus</au><au>Demichev, Vadim</au><au>Slavov, Nikolai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing the throughput of sensitive proteomics by plexDIA</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>41</volume><issue>1</issue><spage>50</spage><epage>59</epage><pages>50-59</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for simultaneously multiplexing the analysis of peptides and samples. Multiplexed analysis with plexDIA increases throughput multiplicatively with the number of labels without reducing proteome coverage or quantitative accuracy. By using three-plex non-isobaric mass tags, plexDIA enables quantification of threefold more protein ratios among nanogram-level samples. Using 1-hour active gradients, plexDIA quantified ~8,000 proteins in each sample of labeled three-plex sets and increased data completeness, reducing missing data more than twofold across samples. Applied to single human cells, plexDIA quantified ~1,000 proteins per cell and achieved 98% data completeness within a plexDIA set while using ~5 minutes of active chromatography per cell. These results establish a general framework for increasing the throughput of sensitive and quantitative protein analysis.
Proteomics of small sample sizes using data-independent acquisition methods achieves higher throughput with multiplexing.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35835881</pmid><doi>10.1038/s41587-022-01389-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2424-9412</orcidid><orcidid>https://orcid.org/0000-0001-9727-9105</orcidid><orcidid>https://orcid.org/0000-0003-2035-1820</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2023-01, Vol.41 (1), p.50-59 |
issn | 1087-0156 1546-1696 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_2691052532 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/1647/2067 631/1647/296 631/553/2694 Agriculture Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Chromatography, Liquid - methods Completeness Computer applications Humans Life Sciences Mass spectrometry Mass Spectrometry - methods Mass spectroscopy Missing data Multiplexing Peptides Peptides - analysis Proteins Proteome - metabolism Proteomes Proteomics Proteomics - methods |
title | Increasing the throughput of sensitive proteomics by plexDIA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20the%20throughput%20of%20sensitive%20proteomics%20by%20plexDIA&rft.jtitle=Nature%20biotechnology&rft.au=Derks,%20Jason&rft.date=2023-01-01&rft.volume=41&rft.issue=1&rft.spage=50&rft.epage=59&rft.pages=50-59&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-022-01389-w&rft_dat=%3Cproquest_cross%3E2691052532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766597571&rft_id=info:pmid/35835881&rfr_iscdi=true |