Increasing the throughput of sensitive proteomics by plexDIA

Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2023-01, Vol.41 (1), p.50-59
Hauptverfasser: Derks, Jason, Leduc, Andrew, Wallmann, Georg, Huffman, R. Gray, Willetts, Matthew, Khan, Saad, Specht, Harrison, Ralser, Markus, Demichev, Vadim, Slavov, Nikolai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 50
container_title Nature biotechnology
container_volume 41
creator Derks, Jason
Leduc, Andrew
Wallmann, Georg
Huffman, R. Gray
Willetts, Matthew
Khan, Saad
Specht, Harrison
Ralser, Markus
Demichev, Vadim
Slavov, Nikolai
description Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for simultaneously multiplexing the analysis of peptides and samples. Multiplexed analysis with plexDIA increases throughput multiplicatively with the number of labels without reducing proteome coverage or quantitative accuracy. By using three-plex non-isobaric mass tags, plexDIA enables quantification of threefold more protein ratios among nanogram-level samples. Using 1-hour active gradients, plexDIA quantified ~8,000 proteins in each sample of labeled three-plex sets and increased data completeness, reducing missing data more than twofold across samples. Applied to single human cells, plexDIA quantified ~1,000 proteins per cell and achieved 98% data completeness within a plexDIA set while using ~5 minutes of active chromatography per cell. These results establish a general framework for increasing the throughput of sensitive and quantitative protein analysis. Proteomics of small sample sizes using data-independent acquisition methods achieves higher throughput with multiplexing.
doi_str_mv 10.1038/s41587-022-01389-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2691052532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691052532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-a78cf167580505765fab77481d46cd576a8fd12c63fc08e85f292fcd86a9ad6f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzmmQmJxlwU-qtUHCj65BmknbKXGoyY-3bmzpVwYWQkJDznT-HD6Fzgq8JTsSNTwkTPMaUxpgkIos3B2hIWAoxgQwOwx3vyoTBAJ14v8IYQwpwjAYJE2EJMkS301o7o3xRL6J2acJ2TbdYrrs2amzkTe2Ltng30do1rWmqQvtovo3Wpfm4m45P0ZFVpTdn-3OEXh_uXyZP8ez5cToZz2KdCtbGigttCXAmMMOMA7NqznkqSJ6CzsODEjYnVENiNRZGMEszanUuQGUqB5uM0FWfG6Z464xvZVV4bcpS1abpvKSQEcwoS2hAL_-gq6ZzdZhOUg7AMs44CRTtKe0a752xcu2KSrmtJFju3MrerQxu5ZdbuQlNF_vobl6Z_KflW2YAkh7woVQvjPv9-5_YT4_4hCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766597571</pqid></control><display><type>article</type><title>Increasing the throughput of sensitive proteomics by plexDIA</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Derks, Jason ; Leduc, Andrew ; Wallmann, Georg ; Huffman, R. Gray ; Willetts, Matthew ; Khan, Saad ; Specht, Harrison ; Ralser, Markus ; Demichev, Vadim ; Slavov, Nikolai</creator><creatorcontrib>Derks, Jason ; Leduc, Andrew ; Wallmann, Georg ; Huffman, R. Gray ; Willetts, Matthew ; Khan, Saad ; Specht, Harrison ; Ralser, Markus ; Demichev, Vadim ; Slavov, Nikolai</creatorcontrib><description>Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for simultaneously multiplexing the analysis of peptides and samples. Multiplexed analysis with plexDIA increases throughput multiplicatively with the number of labels without reducing proteome coverage or quantitative accuracy. By using three-plex non-isobaric mass tags, plexDIA enables quantification of threefold more protein ratios among nanogram-level samples. Using 1-hour active gradients, plexDIA quantified ~8,000 proteins in each sample of labeled three-plex sets and increased data completeness, reducing missing data more than twofold across samples. Applied to single human cells, plexDIA quantified ~1,000 proteins per cell and achieved 98% data completeness within a plexDIA set while using ~5 minutes of active chromatography per cell. These results establish a general framework for increasing the throughput of sensitive and quantitative protein analysis. Proteomics of small sample sizes using data-independent acquisition methods achieves higher throughput with multiplexing.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-022-01389-w</identifier><identifier>PMID: 35835881</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/2067 ; 631/1647/296 ; 631/553/2694 ; Agriculture ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Chromatography, Liquid - methods ; Completeness ; Computer applications ; Humans ; Life Sciences ; Mass spectrometry ; Mass Spectrometry - methods ; Mass spectroscopy ; Missing data ; Multiplexing ; Peptides ; Peptides - analysis ; Proteins ; Proteome - metabolism ; Proteomes ; Proteomics ; Proteomics - methods</subject><ispartof>Nature biotechnology, 2023-01, Vol.41 (1), p.50-59</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-a78cf167580505765fab77481d46cd576a8fd12c63fc08e85f292fcd86a9ad6f3</citedby><cites>FETCH-LOGICAL-c485t-a78cf167580505765fab77481d46cd576a8fd12c63fc08e85f292fcd86a9ad6f3</cites><orcidid>0000-0002-2424-9412 ; 0000-0001-9727-9105 ; 0000-0003-2035-1820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35835881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Derks, Jason</creatorcontrib><creatorcontrib>Leduc, Andrew</creatorcontrib><creatorcontrib>Wallmann, Georg</creatorcontrib><creatorcontrib>Huffman, R. Gray</creatorcontrib><creatorcontrib>Willetts, Matthew</creatorcontrib><creatorcontrib>Khan, Saad</creatorcontrib><creatorcontrib>Specht, Harrison</creatorcontrib><creatorcontrib>Ralser, Markus</creatorcontrib><creatorcontrib>Demichev, Vadim</creatorcontrib><creatorcontrib>Slavov, Nikolai</creatorcontrib><title>Increasing the throughput of sensitive proteomics by plexDIA</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for simultaneously multiplexing the analysis of peptides and samples. Multiplexed analysis with plexDIA increases throughput multiplicatively with the number of labels without reducing proteome coverage or quantitative accuracy. By using three-plex non-isobaric mass tags, plexDIA enables quantification of threefold more protein ratios among nanogram-level samples. Using 1-hour active gradients, plexDIA quantified ~8,000 proteins in each sample of labeled three-plex sets and increased data completeness, reducing missing data more than twofold across samples. Applied to single human cells, plexDIA quantified ~1,000 proteins per cell and achieved 98% data completeness within a plexDIA set while using ~5 minutes of active chromatography per cell. These results establish a general framework for increasing the throughput of sensitive and quantitative protein analysis. Proteomics of small sample sizes using data-independent acquisition methods achieves higher throughput with multiplexing.</description><subject>631/1647/2067</subject><subject>631/1647/296</subject><subject>631/553/2694</subject><subject>Agriculture</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chromatography, Liquid - methods</subject><subject>Completeness</subject><subject>Computer applications</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mass spectroscopy</subject><subject>Missing data</subject><subject>Multiplexing</subject><subject>Peptides</subject><subject>Peptides - analysis</subject><subject>Proteins</subject><subject>Proteome - metabolism</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzmmQmJxlwU-qtUHCj65BmknbKXGoyY-3bmzpVwYWQkJDznT-HD6Fzgq8JTsSNTwkTPMaUxpgkIos3B2hIWAoxgQwOwx3vyoTBAJ14v8IYQwpwjAYJE2EJMkS301o7o3xRL6J2acJ2TbdYrrs2amzkTe2Ltng30do1rWmqQvtovo3Wpfm4m45P0ZFVpTdn-3OEXh_uXyZP8ez5cToZz2KdCtbGigttCXAmMMOMA7NqznkqSJ6CzsODEjYnVENiNRZGMEszanUuQGUqB5uM0FWfG6Z464xvZVV4bcpS1abpvKSQEcwoS2hAL_-gq6ZzdZhOUg7AMs44CRTtKe0a752xcu2KSrmtJFju3MrerQxu5ZdbuQlNF_vobl6Z_KflW2YAkh7woVQvjPv9-5_YT4_4hCI</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Derks, Jason</creator><creator>Leduc, Andrew</creator><creator>Wallmann, Georg</creator><creator>Huffman, R. Gray</creator><creator>Willetts, Matthew</creator><creator>Khan, Saad</creator><creator>Specht, Harrison</creator><creator>Ralser, Markus</creator><creator>Demichev, Vadim</creator><creator>Slavov, Nikolai</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2424-9412</orcidid><orcidid>https://orcid.org/0000-0001-9727-9105</orcidid><orcidid>https://orcid.org/0000-0003-2035-1820</orcidid></search><sort><creationdate>20230101</creationdate><title>Increasing the throughput of sensitive proteomics by plexDIA</title><author>Derks, Jason ; Leduc, Andrew ; Wallmann, Georg ; Huffman, R. Gray ; Willetts, Matthew ; Khan, Saad ; Specht, Harrison ; Ralser, Markus ; Demichev, Vadim ; Slavov, Nikolai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-a78cf167580505765fab77481d46cd576a8fd12c63fc08e85f292fcd86a9ad6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/1647/2067</topic><topic>631/1647/296</topic><topic>631/553/2694</topic><topic>Agriculture</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chromatography, Liquid - methods</topic><topic>Completeness</topic><topic>Computer applications</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mass spectroscopy</topic><topic>Missing data</topic><topic>Multiplexing</topic><topic>Peptides</topic><topic>Peptides - analysis</topic><topic>Proteins</topic><topic>Proteome - metabolism</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derks, Jason</creatorcontrib><creatorcontrib>Leduc, Andrew</creatorcontrib><creatorcontrib>Wallmann, Georg</creatorcontrib><creatorcontrib>Huffman, R. Gray</creatorcontrib><creatorcontrib>Willetts, Matthew</creatorcontrib><creatorcontrib>Khan, Saad</creatorcontrib><creatorcontrib>Specht, Harrison</creatorcontrib><creatorcontrib>Ralser, Markus</creatorcontrib><creatorcontrib>Demichev, Vadim</creatorcontrib><creatorcontrib>Slavov, Nikolai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derks, Jason</au><au>Leduc, Andrew</au><au>Wallmann, Georg</au><au>Huffman, R. Gray</au><au>Willetts, Matthew</au><au>Khan, Saad</au><au>Specht, Harrison</au><au>Ralser, Markus</au><au>Demichev, Vadim</au><au>Slavov, Nikolai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing the throughput of sensitive proteomics by plexDIA</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>41</volume><issue>1</issue><spage>50</spage><epage>59</epage><pages>50-59</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for simultaneously multiplexing the analysis of peptides and samples. Multiplexed analysis with plexDIA increases throughput multiplicatively with the number of labels without reducing proteome coverage or quantitative accuracy. By using three-plex non-isobaric mass tags, plexDIA enables quantification of threefold more protein ratios among nanogram-level samples. Using 1-hour active gradients, plexDIA quantified ~8,000 proteins in each sample of labeled three-plex sets and increased data completeness, reducing missing data more than twofold across samples. Applied to single human cells, plexDIA quantified ~1,000 proteins per cell and achieved 98% data completeness within a plexDIA set while using ~5 minutes of active chromatography per cell. These results establish a general framework for increasing the throughput of sensitive and quantitative protein analysis. Proteomics of small sample sizes using data-independent acquisition methods achieves higher throughput with multiplexing.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35835881</pmid><doi>10.1038/s41587-022-01389-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2424-9412</orcidid><orcidid>https://orcid.org/0000-0001-9727-9105</orcidid><orcidid>https://orcid.org/0000-0003-2035-1820</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2023-01, Vol.41 (1), p.50-59
issn 1087-0156
1546-1696
1546-1696
language eng
recordid cdi_proquest_miscellaneous_2691052532
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/1647/2067
631/1647/296
631/553/2694
Agriculture
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Chromatography, Liquid - methods
Completeness
Computer applications
Humans
Life Sciences
Mass spectrometry
Mass Spectrometry - methods
Mass spectroscopy
Missing data
Multiplexing
Peptides
Peptides - analysis
Proteins
Proteome - metabolism
Proteomes
Proteomics
Proteomics - methods
title Increasing the throughput of sensitive proteomics by plexDIA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20the%20throughput%20of%20sensitive%20proteomics%20by%20plexDIA&rft.jtitle=Nature%20biotechnology&rft.au=Derks,%20Jason&rft.date=2023-01-01&rft.volume=41&rft.issue=1&rft.spage=50&rft.epage=59&rft.pages=50-59&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-022-01389-w&rft_dat=%3Cproquest_cross%3E2691052532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766597571&rft_id=info:pmid/35835881&rfr_iscdi=true