Double-Enhanced Core–Shell–Shell Sb2S3/Sb@TiO2@C Nanorod Composites for Lithium- and Sodium-Ion Batteries

For most alloying- and conversion-type anode materials, a huge volume expansion and structure degradation of the electrodes always hinder their applications. In this work, a novel core–shell–shell Sb2S3/Sb@TiO2@C nanorod composite has been designed layer by layer, which includes an inner Sb2S3/Sb he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-07, Vol.14 (29), p.33064-33075
Hauptverfasser: Zhang, Yingmeng, Li, Shaojun, Liu, Luting, Lin, Yihan, Jiang, Shengyang, Li, Yongliang, Ren, Xiangzhong, Zhang, Peixin, Sun, Lingna, Yang, Hui Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33075
container_issue 29
container_start_page 33064
container_title ACS applied materials & interfaces
container_volume 14
creator Zhang, Yingmeng
Li, Shaojun
Liu, Luting
Lin, Yihan
Jiang, Shengyang
Li, Yongliang
Ren, Xiangzhong
Zhang, Peixin
Sun, Lingna
Yang, Hui Ying
description For most alloying- and conversion-type anode materials, a huge volume expansion and structure degradation of the electrodes always hinder their applications. In this work, a novel core–shell–shell Sb2S3/Sb@TiO2@C nanorod composite has been designed layer by layer, which includes an inner Sb2S3/Sb heterostructure core protected by an oxygen-deficient TiO2 shell and a conductive carbon shell. It is interesting to observe that, during the carbothermic reduction process, the previous Sb2S3 nanorod cores are partially reduced into a metallic Sb phase and the reduced TiO2 also creates many oxygen vacancies, which can greatly enhance the conductivity of the semiconductor Sb2S3. Thanks to the double effects of the TiO2 middle shell and carbon outer shell, the unique double-shelled structure design creates an enhanced dual protection, which can better accommodate the volume-expansive deformation and preserve the structural integrity of the active Sb2S3/Sb core. Especially, the TiO2 middle layer is self-assembled by numerous nanoparticles acting as a nanopillar backbone, which supports between the nanorod core and outer carbon shell to better buffer the volume changes. As a result, the core–shell–shell Sb2S3/Sb@TiO2@C anode shows lithium and sodium storage performances superior to those of the pristine Sb2S3 and core–shell Sb2S3@TiO2 electrodes. For lithium-ion batteries, the Sb2S3/Sb@TiO2@C nanorod composite achieves an initial discharge/recharge capacity of 1244.9/1005.1 mAh g–1 with an initial Coulombic efficiency of about 80.7%, an enhanced rate capability with a capacity of 593.2 mA h g–1 at 5.0 A g–1, and prolonged cycling life for 500 cycles with a reversible capacity of 495.8 mAh g–1 at 0.5 A g–1. For sodium-ion batteries, the nanorodalso exhibits an improved performance with an initial discharge/recharge capacity of 781.4/574.0 mAh g–1 (initial Coulombic efficiency of about 73.46%) and cycling for 400 cycles with a reversible capacity of 422.6 mAh g–1 at 0.8 A g–1. This research sheds light upon double-shell structure designs with an effective middle shell to enhance the energy storage performance of electrode materials.
doi_str_mv 10.1021/acsami.2c05262
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2691052013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691052013</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-d92efb079664d1fd93002c39038ede9af10db8dd73367faa55fc3c2c2a8b27193</originalsourceid><addsrcrecordid>eNo9kL1OwzAUhS0EEqWwMntESGnt6_x5K4QClSo6pMyW4x_VVRKXONl5B96QJyFVgemc4dPRvR9Ct5TMKAE6lyrIxs1AkQRSOEMTyuM4yiGB8_8ex5foKoQ9ISkDkkxQ8-SHqjbRst3JVhmNC9-Z78-vcmfq-i9xWUHJ5mW12LoNLAr8Jlvf-SPcHHxwvQnY-g6vXb9zQxNh2Wpcen3sK9_iR9n3pnMmXKMLK-tgbn5zit6fl9viNVpvXlbFwzqSAKyPNAdjK5LxNI01tZozQkAxTlhutOHSUqKrXOuMsTSzUiaJVUyBAplXkFHOpujutHvo_MdgQi8aF9T4iWyNH4KAlNPREqFsRO9P6KhP7P3QteNhghJxdCpOTsWvU_YDxdFsbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691052013</pqid></control><display><type>article</type><title>Double-Enhanced Core–Shell–Shell Sb2S3/Sb@TiO2@C Nanorod Composites for Lithium- and Sodium-Ion Batteries</title><source>American Chemical Society Journals</source><creator>Zhang, Yingmeng ; Li, Shaojun ; Liu, Luting ; Lin, Yihan ; Jiang, Shengyang ; Li, Yongliang ; Ren, Xiangzhong ; Zhang, Peixin ; Sun, Lingna ; Yang, Hui Ying</creator><creatorcontrib>Zhang, Yingmeng ; Li, Shaojun ; Liu, Luting ; Lin, Yihan ; Jiang, Shengyang ; Li, Yongliang ; Ren, Xiangzhong ; Zhang, Peixin ; Sun, Lingna ; Yang, Hui Ying</creatorcontrib><description>For most alloying- and conversion-type anode materials, a huge volume expansion and structure degradation of the electrodes always hinder their applications. In this work, a novel core–shell–shell Sb2S3/Sb@TiO2@C nanorod composite has been designed layer by layer, which includes an inner Sb2S3/Sb heterostructure core protected by an oxygen-deficient TiO2 shell and a conductive carbon shell. It is interesting to observe that, during the carbothermic reduction process, the previous Sb2S3 nanorod cores are partially reduced into a metallic Sb phase and the reduced TiO2 also creates many oxygen vacancies, which can greatly enhance the conductivity of the semiconductor Sb2S3. Thanks to the double effects of the TiO2 middle shell and carbon outer shell, the unique double-shelled structure design creates an enhanced dual protection, which can better accommodate the volume-expansive deformation and preserve the structural integrity of the active Sb2S3/Sb core. Especially, the TiO2 middle layer is self-assembled by numerous nanoparticles acting as a nanopillar backbone, which supports between the nanorod core and outer carbon shell to better buffer the volume changes. As a result, the core–shell–shell Sb2S3/Sb@TiO2@C anode shows lithium and sodium storage performances superior to those of the pristine Sb2S3 and core–shell Sb2S3@TiO2 electrodes. For lithium-ion batteries, the Sb2S3/Sb@TiO2@C nanorod composite achieves an initial discharge/recharge capacity of 1244.9/1005.1 mAh g–1 with an initial Coulombic efficiency of about 80.7%, an enhanced rate capability with a capacity of 593.2 mA h g–1 at 5.0 A g–1, and prolonged cycling life for 500 cycles with a reversible capacity of 495.8 mAh g–1 at 0.5 A g–1. For sodium-ion batteries, the nanorodalso exhibits an improved performance with an initial discharge/recharge capacity of 781.4/574.0 mAh g–1 (initial Coulombic efficiency of about 73.46%) and cycling for 400 cycles with a reversible capacity of 422.6 mAh g–1 at 0.8 A g–1. This research sheds light upon double-shell structure designs with an effective middle shell to enhance the energy storage performance of electrode materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c05262</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-07, Vol.14 (29), p.33064-33075</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2163-2301 ; 0000-0002-5008-0868 ; 0000-0002-2244-8231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c05262$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c05262$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhang, Yingmeng</creatorcontrib><creatorcontrib>Li, Shaojun</creatorcontrib><creatorcontrib>Liu, Luting</creatorcontrib><creatorcontrib>Lin, Yihan</creatorcontrib><creatorcontrib>Jiang, Shengyang</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Zhang, Peixin</creatorcontrib><creatorcontrib>Sun, Lingna</creatorcontrib><creatorcontrib>Yang, Hui Ying</creatorcontrib><title>Double-Enhanced Core–Shell–Shell Sb2S3/Sb@TiO2@C Nanorod Composites for Lithium- and Sodium-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>For most alloying- and conversion-type anode materials, a huge volume expansion and structure degradation of the electrodes always hinder their applications. In this work, a novel core–shell–shell Sb2S3/Sb@TiO2@C nanorod composite has been designed layer by layer, which includes an inner Sb2S3/Sb heterostructure core protected by an oxygen-deficient TiO2 shell and a conductive carbon shell. It is interesting to observe that, during the carbothermic reduction process, the previous Sb2S3 nanorod cores are partially reduced into a metallic Sb phase and the reduced TiO2 also creates many oxygen vacancies, which can greatly enhance the conductivity of the semiconductor Sb2S3. Thanks to the double effects of the TiO2 middle shell and carbon outer shell, the unique double-shelled structure design creates an enhanced dual protection, which can better accommodate the volume-expansive deformation and preserve the structural integrity of the active Sb2S3/Sb core. Especially, the TiO2 middle layer is self-assembled by numerous nanoparticles acting as a nanopillar backbone, which supports between the nanorod core and outer carbon shell to better buffer the volume changes. As a result, the core–shell–shell Sb2S3/Sb@TiO2@C anode shows lithium and sodium storage performances superior to those of the pristine Sb2S3 and core–shell Sb2S3@TiO2 electrodes. For lithium-ion batteries, the Sb2S3/Sb@TiO2@C nanorod composite achieves an initial discharge/recharge capacity of 1244.9/1005.1 mAh g–1 with an initial Coulombic efficiency of about 80.7%, an enhanced rate capability with a capacity of 593.2 mA h g–1 at 5.0 A g–1, and prolonged cycling life for 500 cycles with a reversible capacity of 495.8 mAh g–1 at 0.5 A g–1. For sodium-ion batteries, the nanorodalso exhibits an improved performance with an initial discharge/recharge capacity of 781.4/574.0 mAh g–1 (initial Coulombic efficiency of about 73.46%) and cycling for 400 cycles with a reversible capacity of 422.6 mAh g–1 at 0.8 A g–1. This research sheds light upon double-shell structure designs with an effective middle shell to enhance the energy storage performance of electrode materials.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAUhS0EEqWwMntESGnt6_x5K4QClSo6pMyW4x_VVRKXONl5B96QJyFVgemc4dPRvR9Ct5TMKAE6lyrIxs1AkQRSOEMTyuM4yiGB8_8ex5foKoQ9ISkDkkxQ8-SHqjbRst3JVhmNC9-Z78-vcmfq-i9xWUHJ5mW12LoNLAr8Jlvf-SPcHHxwvQnY-g6vXb9zQxNh2Wpcen3sK9_iR9n3pnMmXKMLK-tgbn5zit6fl9viNVpvXlbFwzqSAKyPNAdjK5LxNI01tZozQkAxTlhutOHSUqKrXOuMsTSzUiaJVUyBAplXkFHOpujutHvo_MdgQi8aF9T4iWyNH4KAlNPREqFsRO9P6KhP7P3QteNhghJxdCpOTsWvU_YDxdFsbw</recordid><startdate>20220727</startdate><enddate>20220727</enddate><creator>Zhang, Yingmeng</creator><creator>Li, Shaojun</creator><creator>Liu, Luting</creator><creator>Lin, Yihan</creator><creator>Jiang, Shengyang</creator><creator>Li, Yongliang</creator><creator>Ren, Xiangzhong</creator><creator>Zhang, Peixin</creator><creator>Sun, Lingna</creator><creator>Yang, Hui Ying</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2163-2301</orcidid><orcidid>https://orcid.org/0000-0002-5008-0868</orcidid><orcidid>https://orcid.org/0000-0002-2244-8231</orcidid></search><sort><creationdate>20220727</creationdate><title>Double-Enhanced Core–Shell–Shell Sb2S3/Sb@TiO2@C Nanorod Composites for Lithium- and Sodium-Ion Batteries</title><author>Zhang, Yingmeng ; Li, Shaojun ; Liu, Luting ; Lin, Yihan ; Jiang, Shengyang ; Li, Yongliang ; Ren, Xiangzhong ; Zhang, Peixin ; Sun, Lingna ; Yang, Hui Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-d92efb079664d1fd93002c39038ede9af10db8dd73367faa55fc3c2c2a8b27193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yingmeng</creatorcontrib><creatorcontrib>Li, Shaojun</creatorcontrib><creatorcontrib>Liu, Luting</creatorcontrib><creatorcontrib>Lin, Yihan</creatorcontrib><creatorcontrib>Jiang, Shengyang</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Zhang, Peixin</creatorcontrib><creatorcontrib>Sun, Lingna</creatorcontrib><creatorcontrib>Yang, Hui Ying</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yingmeng</au><au>Li, Shaojun</au><au>Liu, Luting</au><au>Lin, Yihan</au><au>Jiang, Shengyang</au><au>Li, Yongliang</au><au>Ren, Xiangzhong</au><au>Zhang, Peixin</au><au>Sun, Lingna</au><au>Yang, Hui Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double-Enhanced Core–Shell–Shell Sb2S3/Sb@TiO2@C Nanorod Composites for Lithium- and Sodium-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-07-27</date><risdate>2022</risdate><volume>14</volume><issue>29</issue><spage>33064</spage><epage>33075</epage><pages>33064-33075</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>For most alloying- and conversion-type anode materials, a huge volume expansion and structure degradation of the electrodes always hinder their applications. In this work, a novel core–shell–shell Sb2S3/Sb@TiO2@C nanorod composite has been designed layer by layer, which includes an inner Sb2S3/Sb heterostructure core protected by an oxygen-deficient TiO2 shell and a conductive carbon shell. It is interesting to observe that, during the carbothermic reduction process, the previous Sb2S3 nanorod cores are partially reduced into a metallic Sb phase and the reduced TiO2 also creates many oxygen vacancies, which can greatly enhance the conductivity of the semiconductor Sb2S3. Thanks to the double effects of the TiO2 middle shell and carbon outer shell, the unique double-shelled structure design creates an enhanced dual protection, which can better accommodate the volume-expansive deformation and preserve the structural integrity of the active Sb2S3/Sb core. Especially, the TiO2 middle layer is self-assembled by numerous nanoparticles acting as a nanopillar backbone, which supports between the nanorod core and outer carbon shell to better buffer the volume changes. As a result, the core–shell–shell Sb2S3/Sb@TiO2@C anode shows lithium and sodium storage performances superior to those of the pristine Sb2S3 and core–shell Sb2S3@TiO2 electrodes. For lithium-ion batteries, the Sb2S3/Sb@TiO2@C nanorod composite achieves an initial discharge/recharge capacity of 1244.9/1005.1 mAh g–1 with an initial Coulombic efficiency of about 80.7%, an enhanced rate capability with a capacity of 593.2 mA h g–1 at 5.0 A g–1, and prolonged cycling life for 500 cycles with a reversible capacity of 495.8 mAh g–1 at 0.5 A g–1. For sodium-ion batteries, the nanorodalso exhibits an improved performance with an initial discharge/recharge capacity of 781.4/574.0 mAh g–1 (initial Coulombic efficiency of about 73.46%) and cycling for 400 cycles with a reversible capacity of 422.6 mAh g–1 at 0.8 A g–1. This research sheds light upon double-shell structure designs with an effective middle shell to enhance the energy storage performance of electrode materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c05262</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2163-2301</orcidid><orcidid>https://orcid.org/0000-0002-5008-0868</orcidid><orcidid>https://orcid.org/0000-0002-2244-8231</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-07, Vol.14 (29), p.33064-33075
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2691052013
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Double-Enhanced Core–Shell–Shell Sb2S3/Sb@TiO2@C Nanorod Composites for Lithium- and Sodium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double-Enhanced%20Core%E2%80%93Shell%E2%80%93Shell%20Sb2S3/Sb@TiO2@C%20Nanorod%20Composites%20for%20Lithium-%20and%20Sodium-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Yingmeng&rft.date=2022-07-27&rft.volume=14&rft.issue=29&rft.spage=33064&rft.epage=33075&rft.pages=33064-33075&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c05262&rft_dat=%3Cproquest_acs_j%3E2691052013%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691052013&rft_id=info:pmid/&rfr_iscdi=true