Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming

In recent years, an operation planning of a district heating and cooling (DHC) plant has been arousing interest as a result of development of cooling load or heat demand prediction methods for district heating and cooling systems. In this paper, we formulate an operation planning of a district heati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing 2001-08, Vol.1 (2), p.139-150
Hauptverfasser: Sakawa, M, Kato, K, Ushiro, S, Inaoka, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 2
container_start_page 139
container_title Applied soft computing
container_volume 1
creator Sakawa, M
Kato, K
Ushiro, S
Inaoka, M
description In recent years, an operation planning of a district heating and cooling (DHC) plant has been arousing interest as a result of development of cooling load or heat demand prediction methods for district heating and cooling systems. In this paper, we formulate an operation planning of a district heating and cooling plant as a mixed integer linear programming problem. Since the formulated problem involves hundreds of variables, we anticipate that it is difficult to strictly solve it by enumeration-based methods. Thereby, we propose an approximate solution method based on genetic algorithms for mixed integer programming problems. Furthermore, we show the feasibility and effectiveness of the proposed method by comparison with the branch-and-bound method through numerical experiments using actual plant data.
doi_str_mv 10.1016/S1568-4946(01)00014-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26905620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26905620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-5a21f2e7d4b5e9e5cc6ad53e3932c958b38e0ba5fbdc0db5d87ea378030b63d93</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhnNQcF39CUJOoodq0jTZ9iiLX7CwBxX2FtJk2o20TU1S0H9vuiueZuaddz54ELqi5I4SKu7fKBdlVlSFuCH0lhBCi2x3ghb_8hk6D-Ez6aLKywUatyN4Fa0b8NipYbBDi12DjQ3RWx3xHlIzaWowWDvXzflsjAFPYS5aGCBajVXXOm_jvg-4cR739hsMtkOEFjwevWu96vs0cIFOG9UFuPyLS_Tx9Pi-fsk22-fX9cMm07ngMeMqp00OK1PUHCrgWgtlOANWsVxXvKxZCaRWvKmNJqbmplyBYquSMFILZiq2RNfHven21wQhyt4GDV36HdwUZC4qwkVOkpEfjdq7EDw0cvS2V_5HUiJnpvLAVM7wJKHywFTu2C88M2_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26905620</pqid></control><display><type>article</type><title>Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming</title><source>Elsevier ScienceDirect Journals</source><creator>Sakawa, M ; Kato, K ; Ushiro, S ; Inaoka, M</creator><creatorcontrib>Sakawa, M ; Kato, K ; Ushiro, S ; Inaoka, M</creatorcontrib><description>In recent years, an operation planning of a district heating and cooling (DHC) plant has been arousing interest as a result of development of cooling load or heat demand prediction methods for district heating and cooling systems. In this paper, we formulate an operation planning of a district heating and cooling plant as a mixed integer linear programming problem. Since the formulated problem involves hundreds of variables, we anticipate that it is difficult to strictly solve it by enumeration-based methods. Thereby, we propose an approximate solution method based on genetic algorithms for mixed integer programming problems. Furthermore, we show the feasibility and effectiveness of the proposed method by comparison with the branch-and-bound method through numerical experiments using actual plant data.</description><identifier>ISSN: 1568-4946</identifier><identifier>DOI: 10.1016/S1568-4946(01)00014-X</identifier><language>eng</language><ispartof>Applied soft computing, 2001-08, Vol.1 (2), p.139-150</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-5a21f2e7d4b5e9e5cc6ad53e3932c958b38e0ba5fbdc0db5d87ea378030b63d93</citedby><cites>FETCH-LOGICAL-c265t-5a21f2e7d4b5e9e5cc6ad53e3932c958b38e0ba5fbdc0db5d87ea378030b63d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sakawa, M</creatorcontrib><creatorcontrib>Kato, K</creatorcontrib><creatorcontrib>Ushiro, S</creatorcontrib><creatorcontrib>Inaoka, M</creatorcontrib><title>Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming</title><title>Applied soft computing</title><description>In recent years, an operation planning of a district heating and cooling (DHC) plant has been arousing interest as a result of development of cooling load or heat demand prediction methods for district heating and cooling systems. In this paper, we formulate an operation planning of a district heating and cooling plant as a mixed integer linear programming problem. Since the formulated problem involves hundreds of variables, we anticipate that it is difficult to strictly solve it by enumeration-based methods. Thereby, we propose an approximate solution method based on genetic algorithms for mixed integer programming problems. Furthermore, we show the feasibility and effectiveness of the proposed method by comparison with the branch-and-bound method through numerical experiments using actual plant data.</description><issn>1568-4946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhnNQcF39CUJOoodq0jTZ9iiLX7CwBxX2FtJk2o20TU1S0H9vuiueZuaddz54ELqi5I4SKu7fKBdlVlSFuCH0lhBCi2x3ghb_8hk6D-Ez6aLKywUatyN4Fa0b8NipYbBDi12DjQ3RWx3xHlIzaWowWDvXzflsjAFPYS5aGCBajVXXOm_jvg-4cR739hsMtkOEFjwevWu96vs0cIFOG9UFuPyLS_Tx9Pi-fsk22-fX9cMm07ngMeMqp00OK1PUHCrgWgtlOANWsVxXvKxZCaRWvKmNJqbmplyBYquSMFILZiq2RNfHven21wQhyt4GDV36HdwUZC4qwkVOkpEfjdq7EDw0cvS2V_5HUiJnpvLAVM7wJKHywFTu2C88M2_o</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Sakawa, M</creator><creator>Kato, K</creator><creator>Ushiro, S</creator><creator>Inaoka, M</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010801</creationdate><title>Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming</title><author>Sakawa, M ; Kato, K ; Ushiro, S ; Inaoka, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-5a21f2e7d4b5e9e5cc6ad53e3932c958b38e0ba5fbdc0db5d87ea378030b63d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakawa, M</creatorcontrib><creatorcontrib>Kato, K</creatorcontrib><creatorcontrib>Ushiro, S</creatorcontrib><creatorcontrib>Inaoka, M</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakawa, M</au><au>Kato, K</au><au>Ushiro, S</au><au>Inaoka, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming</atitle><jtitle>Applied soft computing</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>1</volume><issue>2</issue><spage>139</spage><epage>150</epage><pages>139-150</pages><issn>1568-4946</issn><abstract>In recent years, an operation planning of a district heating and cooling (DHC) plant has been arousing interest as a result of development of cooling load or heat demand prediction methods for district heating and cooling systems. In this paper, we formulate an operation planning of a district heating and cooling plant as a mixed integer linear programming problem. Since the formulated problem involves hundreds of variables, we anticipate that it is difficult to strictly solve it by enumeration-based methods. Thereby, we propose an approximate solution method based on genetic algorithms for mixed integer programming problems. Furthermore, we show the feasibility and effectiveness of the proposed method by comparison with the branch-and-bound method through numerical experiments using actual plant data.</abstract><doi>10.1016/S1568-4946(01)00014-X</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1568-4946
ispartof Applied soft computing, 2001-08, Vol.1 (2), p.139-150
issn 1568-4946
language eng
recordid cdi_proquest_miscellaneous_26905620
source Elsevier ScienceDirect Journals
title Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operation%20planning%20of%20district%20heating%20and%20cooling%20plants%20using%20genetic%20algorithms%20for%20mixed%20integer%20programming&rft.jtitle=Applied%20soft%20computing&rft.au=Sakawa,%20M&rft.date=2001-08-01&rft.volume=1&rft.issue=2&rft.spage=139&rft.epage=150&rft.pages=139-150&rft.issn=1568-4946&rft_id=info:doi/10.1016/S1568-4946(01)00014-X&rft_dat=%3Cproquest_cross%3E26905620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26905620&rft_id=info:pmid/&rfr_iscdi=true