Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming
In recent years, an operation planning of a district heating and cooling (DHC) plant has been arousing interest as a result of development of cooling load or heat demand prediction methods for district heating and cooling systems. In this paper, we formulate an operation planning of a district heati...
Gespeichert in:
Veröffentlicht in: | Applied soft computing 2001-08, Vol.1 (2), p.139-150 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | 2 |
container_start_page | 139 |
container_title | Applied soft computing |
container_volume | 1 |
creator | Sakawa, M Kato, K Ushiro, S Inaoka, M |
description | In recent years, an operation planning of a district heating and cooling (DHC) plant has been arousing interest as a result of development of cooling load or heat demand prediction methods for district heating and cooling systems. In this paper, we formulate an operation planning of a district heating and cooling plant as a mixed integer linear programming problem. Since the formulated problem involves hundreds of variables, we anticipate that it is difficult to strictly solve it by enumeration-based methods. Thereby, we propose an approximate solution method based on genetic algorithms for mixed integer programming problems. Furthermore, we show the feasibility and effectiveness of the proposed method by comparison with the branch-and-bound method through numerical experiments using actual plant data. |
doi_str_mv | 10.1016/S1568-4946(01)00014-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26905620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26905620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-5a21f2e7d4b5e9e5cc6ad53e3932c958b38e0ba5fbdc0db5d87ea378030b63d93</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhnNQcF39CUJOoodq0jTZ9iiLX7CwBxX2FtJk2o20TU1S0H9vuiueZuaddz54ELqi5I4SKu7fKBdlVlSFuCH0lhBCi2x3ghb_8hk6D-Ez6aLKywUatyN4Fa0b8NipYbBDi12DjQ3RWx3xHlIzaWowWDvXzflsjAFPYS5aGCBajVXXOm_jvg-4cR739hsMtkOEFjwevWu96vs0cIFOG9UFuPyLS_Tx9Pi-fsk22-fX9cMm07ngMeMqp00OK1PUHCrgWgtlOANWsVxXvKxZCaRWvKmNJqbmplyBYquSMFILZiq2RNfHven21wQhyt4GDV36HdwUZC4qwkVOkpEfjdq7EDw0cvS2V_5HUiJnpvLAVM7wJKHywFTu2C88M2_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26905620</pqid></control><display><type>article</type><title>Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming</title><source>Elsevier ScienceDirect Journals</source><creator>Sakawa, M ; Kato, K ; Ushiro, S ; Inaoka, M</creator><creatorcontrib>Sakawa, M ; Kato, K ; Ushiro, S ; Inaoka, M</creatorcontrib><description>In recent years, an operation planning of a district heating and cooling (DHC) plant has been arousing interest as a result of development of cooling load or heat demand prediction methods for district heating and cooling systems. In this paper, we formulate an operation planning of a district heating and cooling plant as a mixed integer linear programming problem. Since the formulated problem involves hundreds of variables, we anticipate that it is difficult to strictly solve it by enumeration-based methods. Thereby, we propose an approximate solution method based on genetic algorithms for mixed integer programming problems. Furthermore, we show the feasibility and effectiveness of the proposed method by comparison with the branch-and-bound method through numerical experiments using actual plant data.</description><identifier>ISSN: 1568-4946</identifier><identifier>DOI: 10.1016/S1568-4946(01)00014-X</identifier><language>eng</language><ispartof>Applied soft computing, 2001-08, Vol.1 (2), p.139-150</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-5a21f2e7d4b5e9e5cc6ad53e3932c958b38e0ba5fbdc0db5d87ea378030b63d93</citedby><cites>FETCH-LOGICAL-c265t-5a21f2e7d4b5e9e5cc6ad53e3932c958b38e0ba5fbdc0db5d87ea378030b63d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sakawa, M</creatorcontrib><creatorcontrib>Kato, K</creatorcontrib><creatorcontrib>Ushiro, S</creatorcontrib><creatorcontrib>Inaoka, M</creatorcontrib><title>Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming</title><title>Applied soft computing</title><description>In recent years, an operation planning of a district heating and cooling (DHC) plant has been arousing interest as a result of development of cooling load or heat demand prediction methods for district heating and cooling systems. In this paper, we formulate an operation planning of a district heating and cooling plant as a mixed integer linear programming problem. Since the formulated problem involves hundreds of variables, we anticipate that it is difficult to strictly solve it by enumeration-based methods. Thereby, we propose an approximate solution method based on genetic algorithms for mixed integer programming problems. Furthermore, we show the feasibility and effectiveness of the proposed method by comparison with the branch-and-bound method through numerical experiments using actual plant data.</description><issn>1568-4946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhnNQcF39CUJOoodq0jTZ9iiLX7CwBxX2FtJk2o20TU1S0H9vuiueZuaddz54ELqi5I4SKu7fKBdlVlSFuCH0lhBCi2x3ghb_8hk6D-Ez6aLKywUatyN4Fa0b8NipYbBDi12DjQ3RWx3xHlIzaWowWDvXzflsjAFPYS5aGCBajVXXOm_jvg-4cR739hsMtkOEFjwevWu96vs0cIFOG9UFuPyLS_Tx9Pi-fsk22-fX9cMm07ngMeMqp00OK1PUHCrgWgtlOANWsVxXvKxZCaRWvKmNJqbmplyBYquSMFILZiq2RNfHven21wQhyt4GDV36HdwUZC4qwkVOkpEfjdq7EDw0cvS2V_5HUiJnpvLAVM7wJKHywFTu2C88M2_o</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Sakawa, M</creator><creator>Kato, K</creator><creator>Ushiro, S</creator><creator>Inaoka, M</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010801</creationdate><title>Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming</title><author>Sakawa, M ; Kato, K ; Ushiro, S ; Inaoka, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-5a21f2e7d4b5e9e5cc6ad53e3932c958b38e0ba5fbdc0db5d87ea378030b63d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakawa, M</creatorcontrib><creatorcontrib>Kato, K</creatorcontrib><creatorcontrib>Ushiro, S</creatorcontrib><creatorcontrib>Inaoka, M</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakawa, M</au><au>Kato, K</au><au>Ushiro, S</au><au>Inaoka, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming</atitle><jtitle>Applied soft computing</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>1</volume><issue>2</issue><spage>139</spage><epage>150</epage><pages>139-150</pages><issn>1568-4946</issn><abstract>In recent years, an operation planning of a district heating and cooling (DHC) plant has been arousing interest as a result of development of cooling load or heat demand prediction methods for district heating and cooling systems. In this paper, we formulate an operation planning of a district heating and cooling plant as a mixed integer linear programming problem. Since the formulated problem involves hundreds of variables, we anticipate that it is difficult to strictly solve it by enumeration-based methods. Thereby, we propose an approximate solution method based on genetic algorithms for mixed integer programming problems. Furthermore, we show the feasibility and effectiveness of the proposed method by comparison with the branch-and-bound method through numerical experiments using actual plant data.</abstract><doi>10.1016/S1568-4946(01)00014-X</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-4946 |
ispartof | Applied soft computing, 2001-08, Vol.1 (2), p.139-150 |
issn | 1568-4946 |
language | eng |
recordid | cdi_proquest_miscellaneous_26905620 |
source | Elsevier ScienceDirect Journals |
title | Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operation%20planning%20of%20district%20heating%20and%20cooling%20plants%20using%20genetic%20algorithms%20for%20mixed%20integer%20programming&rft.jtitle=Applied%20soft%20computing&rft.au=Sakawa,%20M&rft.date=2001-08-01&rft.volume=1&rft.issue=2&rft.spage=139&rft.epage=150&rft.pages=139-150&rft.issn=1568-4946&rft_id=info:doi/10.1016/S1568-4946(01)00014-X&rft_dat=%3Cproquest_cross%3E26905620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26905620&rft_id=info:pmid/&rfr_iscdi=true |