Practical and Provable Security against Differential and Linear Cryptanalysis for Substitution‐Permutation Networks

We examine the diffusion layers of some block ciphers referred to as substitution‐permutation networks. We investigate the practical and provable security of these diffusion layers against differential and linear cryptanalysis. First, in terms of practical security, we show that the minimum number o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ETRI journal 2001-12, Vol.23 (4), p.158-167
Hauptverfasser: Kang, Ju‐Sung, Hong, Seokhie, Lee, Sangjin, Yi, Okyeon, Park, Choonsik, Lim, Jongin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 4
container_start_page 158
container_title ETRI journal
container_volume 23
creator Kang, Ju‐Sung
Hong, Seokhie
Lee, Sangjin
Yi, Okyeon
Park, Choonsik
Lim, Jongin
description We examine the diffusion layers of some block ciphers referred to as substitution‐permutation networks. We investigate the practical and provable security of these diffusion layers against differential and linear cryptanalysis. First, in terms of practical security, we show that the minimum number of differentially active S‐boxes and that of linearly active S‐boxes are generally not identical and propose some special conditions in which those are identical. We also study the optimal diffusion effect for some diffusion layers according to their constraints. Second, we obtain the results that the consecutive two rounds of SPN structure provide provable security against differential and linear cryptanalysis, i.e., we prove that the probability of each differential (resp. linear hull) of the consecutive two rounds of SPN structure with a maximal diffusion layer is bounded by pn (resp. qn) and that of each differential (resp. linear hull) of the SDS function with a semi‐maximal diffusion layer is bounded by pn‐1 (resp. qn‐1), where p and q are maximum differential and linear probabilities of the substitution layer, respectively.
doi_str_mv 10.4218/etrij.01.0101.0402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26901589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26901589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3998-be756d513dba3e4feb427b6e34dced9d6fade8b816e0cc54152679d521213c2b3</originalsourceid><addsrcrecordid>eNqNkM9q3DAQh0VJoJukL9CTLu3NG2kka-1j2SRtYWmX_DmLsTwuSr32VpITfMsj5BnzJF1nF3INDDMMfPNj-Bj7LMVcgyzOKQV_PxdyV1PTAj6wGYBS2UKBOWIzCZBnRhv1kZ3EeC8ECJ0XMzasA7rkHbYcu5qvQ_-AVUv8htwQfBo5_kHfxcQvfNNQoC75A7ryHWHgyzBuE3bYjtFH3vSB3wxVTD4Nyffdy9PzmsJmSDht_Belxz78jWfsuME20qfDPGV3V5e3yx_Z6vf3n8tvq8ypsiyyiha5qXOp6goV6YYqDYvKkNK1o7qsTYM1FVUhDQnnci1zMIuyzkGCVA4qdcq-7nO3of83UEx246OjtsWO-iFaMKWQeVHuQNiDLvQxBmrsNvgNhtFKYSfD9tWwFdJOhu1keHf05ZCOcSewCdg5H98utYRCmSm82HOPvqXxHcn28vYapsfUf36GksA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26901589</pqid></control><display><type>article</type><title>Practical and Provable Security against Differential and Linear Cryptanalysis for Substitution‐Permutation Networks</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Kang, Ju‐Sung ; Hong, Seokhie ; Lee, Sangjin ; Yi, Okyeon ; Park, Choonsik ; Lim, Jongin</creator><creatorcontrib>Kang, Ju‐Sung ; Hong, Seokhie ; Lee, Sangjin ; Yi, Okyeon ; Park, Choonsik ; Lim, Jongin</creatorcontrib><description>We examine the diffusion layers of some block ciphers referred to as substitution‐permutation networks. We investigate the practical and provable security of these diffusion layers against differential and linear cryptanalysis. First, in terms of practical security, we show that the minimum number of differentially active S‐boxes and that of linearly active S‐boxes are generally not identical and propose some special conditions in which those are identical. We also study the optimal diffusion effect for some diffusion layers according to their constraints. Second, we obtain the results that the consecutive two rounds of SPN structure provide provable security against differential and linear cryptanalysis, i.e., we prove that the probability of each differential (resp. linear hull) of the consecutive two rounds of SPN structure with a maximal diffusion layer is bounded by pn (resp. qn) and that of each differential (resp. linear hull) of the SDS function with a semi‐maximal diffusion layer is bounded by pn‐1 (resp. qn‐1), where p and q are maximum differential and linear probabilities of the substitution layer, respectively.</description><identifier>ISSN: 1225-6463</identifier><identifier>EISSN: 2233-7326</identifier><identifier>DOI: 10.4218/etrij.01.0101.0402</identifier><language>eng</language><publisher>Taejon: Electronics and Telecommunications Research Institute</publisher><subject>Applied sciences ; Cryptography ; Exact sciences and technology ; Information, signal and communications theory ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>ETRI journal, 2001-12, Vol.23 (4), p.158-167</ispartof><rights>2001 ETRI</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3998-be756d513dba3e4feb427b6e34dced9d6fade8b816e0cc54152679d521213c2b3</citedby><cites>FETCH-LOGICAL-c3998-be756d513dba3e4feb427b6e34dced9d6fade8b816e0cc54152679d521213c2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.4218%2Fetrij.01.0101.0402$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.4218%2Fetrij.01.0101.0402$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1434,27929,27930,46414,46838</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14128369$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Ju‐Sung</creatorcontrib><creatorcontrib>Hong, Seokhie</creatorcontrib><creatorcontrib>Lee, Sangjin</creatorcontrib><creatorcontrib>Yi, Okyeon</creatorcontrib><creatorcontrib>Park, Choonsik</creatorcontrib><creatorcontrib>Lim, Jongin</creatorcontrib><title>Practical and Provable Security against Differential and Linear Cryptanalysis for Substitution‐Permutation Networks</title><title>ETRI journal</title><description>We examine the diffusion layers of some block ciphers referred to as substitution‐permutation networks. We investigate the practical and provable security of these diffusion layers against differential and linear cryptanalysis. First, in terms of practical security, we show that the minimum number of differentially active S‐boxes and that of linearly active S‐boxes are generally not identical and propose some special conditions in which those are identical. We also study the optimal diffusion effect for some diffusion layers according to their constraints. Second, we obtain the results that the consecutive two rounds of SPN structure provide provable security against differential and linear cryptanalysis, i.e., we prove that the probability of each differential (resp. linear hull) of the consecutive two rounds of SPN structure with a maximal diffusion layer is bounded by pn (resp. qn) and that of each differential (resp. linear hull) of the SDS function with a semi‐maximal diffusion layer is bounded by pn‐1 (resp. qn‐1), where p and q are maximum differential and linear probabilities of the substitution layer, respectively.</description><subject>Applied sciences</subject><subject>Cryptography</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>1225-6463</issn><issn>2233-7326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNkM9q3DAQh0VJoJukL9CTLu3NG2kka-1j2SRtYWmX_DmLsTwuSr32VpITfMsj5BnzJF1nF3INDDMMfPNj-Bj7LMVcgyzOKQV_PxdyV1PTAj6wGYBS2UKBOWIzCZBnRhv1kZ3EeC8ECJ0XMzasA7rkHbYcu5qvQ_-AVUv8htwQfBo5_kHfxcQvfNNQoC75A7ryHWHgyzBuE3bYjtFH3vSB3wxVTD4Nyffdy9PzmsJmSDht_Belxz78jWfsuME20qfDPGV3V5e3yx_Z6vf3n8tvq8ypsiyyiha5qXOp6goV6YYqDYvKkNK1o7qsTYM1FVUhDQnnci1zMIuyzkGCVA4qdcq-7nO3of83UEx246OjtsWO-iFaMKWQeVHuQNiDLvQxBmrsNvgNhtFKYSfD9tWwFdJOhu1keHf05ZCOcSewCdg5H98utYRCmSm82HOPvqXxHcn28vYapsfUf36GksA</recordid><startdate>200112</startdate><enddate>200112</enddate><creator>Kang, Ju‐Sung</creator><creator>Hong, Seokhie</creator><creator>Lee, Sangjin</creator><creator>Yi, Okyeon</creator><creator>Park, Choonsik</creator><creator>Lim, Jongin</creator><general>Electronics and Telecommunications Research Institute</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200112</creationdate><title>Practical and Provable Security against Differential and Linear Cryptanalysis for Substitution‐Permutation Networks</title><author>Kang, Ju‐Sung ; Hong, Seokhie ; Lee, Sangjin ; Yi, Okyeon ; Park, Choonsik ; Lim, Jongin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3998-be756d513dba3e4feb427b6e34dced9d6fade8b816e0cc54152679d521213c2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Cryptography</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Ju‐Sung</creatorcontrib><creatorcontrib>Hong, Seokhie</creatorcontrib><creatorcontrib>Lee, Sangjin</creatorcontrib><creatorcontrib>Yi, Okyeon</creatorcontrib><creatorcontrib>Park, Choonsik</creatorcontrib><creatorcontrib>Lim, Jongin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ETRI journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Ju‐Sung</au><au>Hong, Seokhie</au><au>Lee, Sangjin</au><au>Yi, Okyeon</au><au>Park, Choonsik</au><au>Lim, Jongin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical and Provable Security against Differential and Linear Cryptanalysis for Substitution‐Permutation Networks</atitle><jtitle>ETRI journal</jtitle><date>2001-12</date><risdate>2001</risdate><volume>23</volume><issue>4</issue><spage>158</spage><epage>167</epage><pages>158-167</pages><issn>1225-6463</issn><eissn>2233-7326</eissn><abstract>We examine the diffusion layers of some block ciphers referred to as substitution‐permutation networks. We investigate the practical and provable security of these diffusion layers against differential and linear cryptanalysis. First, in terms of practical security, we show that the minimum number of differentially active S‐boxes and that of linearly active S‐boxes are generally not identical and propose some special conditions in which those are identical. We also study the optimal diffusion effect for some diffusion layers according to their constraints. Second, we obtain the results that the consecutive two rounds of SPN structure provide provable security against differential and linear cryptanalysis, i.e., we prove that the probability of each differential (resp. linear hull) of the consecutive two rounds of SPN structure with a maximal diffusion layer is bounded by pn (resp. qn) and that of each differential (resp. linear hull) of the SDS function with a semi‐maximal diffusion layer is bounded by pn‐1 (resp. qn‐1), where p and q are maximum differential and linear probabilities of the substitution layer, respectively.</abstract><cop>Taejon</cop><pub>Electronics and Telecommunications Research Institute</pub><doi>10.4218/etrij.01.0101.0402</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1225-6463
ispartof ETRI journal, 2001-12, Vol.23 (4), p.158-167
issn 1225-6463
2233-7326
language eng
recordid cdi_proquest_miscellaneous_26901589
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Applied sciences
Cryptography
Exact sciences and technology
Information, signal and communications theory
Signal and communications theory
Telecommunications and information theory
title Practical and Provable Security against Differential and Linear Cryptanalysis for Substitution‐Permutation Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20and%20Provable%20Security%20against%20Differential%20and%20Linear%20Cryptanalysis%20for%20Substitution%E2%80%90Permutation%20Networks&rft.jtitle=ETRI%20journal&rft.au=Kang,%20Ju%E2%80%90Sung&rft.date=2001-12&rft.volume=23&rft.issue=4&rft.spage=158&rft.epage=167&rft.pages=158-167&rft.issn=1225-6463&rft.eissn=2233-7326&rft_id=info:doi/10.4218/etrij.01.0101.0402&rft_dat=%3Cproquest_cross%3E26901589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26901589&rft_id=info:pmid/&rfr_iscdi=true