Application of a new cubic turbulence model to piloted and bluff-body diffusion flames

A new two-equation turbulence model is described. It combines an algebraic, non-linear expression of the Reynolds stresses in terms of strain rate and vorticity tensor components, with a modified transport equation for the dissipation rate. Thanks to the cubic law for the Reynolds stresses, the infl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2001-07, Vol.126 (1), p.1533-1556
Hauptverfasser: Merci, Bart, Dick, E., Vierendeels, J., Roekaerts, D., Peeters, T.W.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1556
container_issue 1
container_start_page 1533
container_title Combustion and flame
container_volume 126
creator Merci, Bart
Dick, E.
Vierendeels, J.
Roekaerts, D.
Peeters, T.W.J.
description A new two-equation turbulence model is described. It combines an algebraic, non-linear expression of the Reynolds stresses in terms of strain rate and vorticity tensor components, with a modified transport equation for the dissipation rate. Thanks to the cubic law for the Reynolds stresses, the influence on turbulence from streamline curvature is accounted for, while the increase in computational costs is small. The classical transport equation for the dissipation rate is altered, in order to bring more physics into this equation. As a result, more realistic values for the turbulence quantities are obtained. A new low-Reynolds source term has been introduced and a model parameter is written in terms of dimensionless strain rate and vorticity. The resulting model is firstly applied to the inert turbulent flow over a backward-facing step, demonstrating the quality of the turbulence model. Next, application to an inertly mixing round jet reveals that the spreading rate of the mixture fraction is correctly predicted. Afterwards, a piloted-jet diffusion flame is considered. Finally, inert and reacting flows in a bluff-body burner are addressed. It is illustrated for both reacting test cases that the turbulence model is important with respect to the flame structure. It is more important than the chemistry model for the chosen test cases. Results are compared to what is obtained by linear turbulence models. For the reacting test cases, the conserved scalar approach with pre-assumed β-probability density function (PDF) is used.
doi_str_mv 10.1016/S0010-2180(01)00272-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26900171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218001002723</els_id><sourcerecordid>26900171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-684fe7907843ebb8c67b8defb0aaf4de5080f7c9e1287cdbef5c9ab704abb1ba3</originalsourceid><addsrcrecordid>eNqFkMlKBTEQRYMo-Bw-QchG0UVrpaekVyLiBIILh23IUIFIXqdNuhX_3n4-0aWr2py6l3sIOWBwyoC1Z48ADIqSCTgGdgJQ8rKoNsiCNU1blF3JNsniF9kmOzm_AgCvq2pBXi6GIXijRh97Gh1VtMcPaibtDR2npKeAvUG6jBYDHSMdfIgjWqp6S3WYnCt0tJ_UeuemvMpwQS0x75Etp0LG_Z-7S56vr54ub4v7h5u7y4v7wlStGItW1A55B1zUFWotTMu1sOg0KOVqiw0IcNx0yErBjdXoGtMpzaFWWjOtql1ytM4dUnybMI9y6bPBEFSPccqybLt5OWcz2KxBk2LOCZ0ckl-q9CkZyJVF-W1RrhRJYPLboqzmv8OfApWNCi6p3vj891xDJ0oQM3e-5nBe--4xyWz8Sp31Cc0obfT_NH0BmlqHow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26900171</pqid></control><display><type>article</type><title>Application of a new cubic turbulence model to piloted and bluff-body diffusion flames</title><source>Elsevier ScienceDirect Journals</source><creator>Merci, Bart ; Dick, E. ; Vierendeels, J. ; Roekaerts, D. ; Peeters, T.W.J.</creator><creatorcontrib>Merci, Bart ; Dick, E. ; Vierendeels, J. ; Roekaerts, D. ; Peeters, T.W.J.</creatorcontrib><description>A new two-equation turbulence model is described. It combines an algebraic, non-linear expression of the Reynolds stresses in terms of strain rate and vorticity tensor components, with a modified transport equation for the dissipation rate. Thanks to the cubic law for the Reynolds stresses, the influence on turbulence from streamline curvature is accounted for, while the increase in computational costs is small. The classical transport equation for the dissipation rate is altered, in order to bring more physics into this equation. As a result, more realistic values for the turbulence quantities are obtained. A new low-Reynolds source term has been introduced and a model parameter is written in terms of dimensionless strain rate and vorticity. The resulting model is firstly applied to the inert turbulent flow over a backward-facing step, demonstrating the quality of the turbulence model. Next, application to an inertly mixing round jet reveals that the spreading rate of the mixture fraction is correctly predicted. Afterwards, a piloted-jet diffusion flame is considered. Finally, inert and reacting flows in a bluff-body burner are addressed. It is illustrated for both reacting test cases that the turbulence model is important with respect to the flame structure. It is more important than the chemistry model for the chosen test cases. Results are compared to what is obtained by linear turbulence models. For the reacting test cases, the conserved scalar approach with pre-assumed β-probability density function (PDF) is used.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/S0010-2180(01)00272-3</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Combustion. Flame ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Theoretical studies ; Theoretical studies. Data and constants. Metering</subject><ispartof>Combustion and flame, 2001-07, Vol.126 (1), p.1533-1556</ispartof><rights>2001 Elsevier Science Inc.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-684fe7907843ebb8c67b8defb0aaf4de5080f7c9e1287cdbef5c9ab704abb1ba3</citedby><cites>FETCH-LOGICAL-c368t-684fe7907843ebb8c67b8defb0aaf4de5080f7c9e1287cdbef5c9ab704abb1ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218001002723$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14098208$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Merci, Bart</creatorcontrib><creatorcontrib>Dick, E.</creatorcontrib><creatorcontrib>Vierendeels, J.</creatorcontrib><creatorcontrib>Roekaerts, D.</creatorcontrib><creatorcontrib>Peeters, T.W.J.</creatorcontrib><title>Application of a new cubic turbulence model to piloted and bluff-body diffusion flames</title><title>Combustion and flame</title><description>A new two-equation turbulence model is described. It combines an algebraic, non-linear expression of the Reynolds stresses in terms of strain rate and vorticity tensor components, with a modified transport equation for the dissipation rate. Thanks to the cubic law for the Reynolds stresses, the influence on turbulence from streamline curvature is accounted for, while the increase in computational costs is small. The classical transport equation for the dissipation rate is altered, in order to bring more physics into this equation. As a result, more realistic values for the turbulence quantities are obtained. A new low-Reynolds source term has been introduced and a model parameter is written in terms of dimensionless strain rate and vorticity. The resulting model is firstly applied to the inert turbulent flow over a backward-facing step, demonstrating the quality of the turbulence model. Next, application to an inertly mixing round jet reveals that the spreading rate of the mixture fraction is correctly predicted. Afterwards, a piloted-jet diffusion flame is considered. Finally, inert and reacting flows in a bluff-body burner are addressed. It is illustrated for both reacting test cases that the turbulence model is important with respect to the flame structure. It is more important than the chemistry model for the chosen test cases. Results are compared to what is obtained by linear turbulence models. For the reacting test cases, the conserved scalar approach with pre-assumed β-probability density function (PDF) is used.</description><subject>Applied sciences</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Theoretical studies</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkMlKBTEQRYMo-Bw-QchG0UVrpaekVyLiBIILh23IUIFIXqdNuhX_3n4-0aWr2py6l3sIOWBwyoC1Z48ADIqSCTgGdgJQ8rKoNsiCNU1blF3JNsniF9kmOzm_AgCvq2pBXi6GIXijRh97Gh1VtMcPaibtDR2npKeAvUG6jBYDHSMdfIgjWqp6S3WYnCt0tJ_UeuemvMpwQS0x75Etp0LG_Z-7S56vr54ub4v7h5u7y4v7wlStGItW1A55B1zUFWotTMu1sOg0KOVqiw0IcNx0yErBjdXoGtMpzaFWWjOtql1ytM4dUnybMI9y6bPBEFSPccqybLt5OWcz2KxBk2LOCZ0ckl-q9CkZyJVF-W1RrhRJYPLboqzmv8OfApWNCi6p3vj891xDJ0oQM3e-5nBe--4xyWz8Sp31Cc0obfT_NH0BmlqHow</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Merci, Bart</creator><creator>Dick, E.</creator><creator>Vierendeels, J.</creator><creator>Roekaerts, D.</creator><creator>Peeters, T.W.J.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20010701</creationdate><title>Application of a new cubic turbulence model to piloted and bluff-body diffusion flames</title><author>Merci, Bart ; Dick, E. ; Vierendeels, J. ; Roekaerts, D. ; Peeters, T.W.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-684fe7907843ebb8c67b8defb0aaf4de5080f7c9e1287cdbef5c9ab704abb1ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Theoretical studies</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merci, Bart</creatorcontrib><creatorcontrib>Dick, E.</creatorcontrib><creatorcontrib>Vierendeels, J.</creatorcontrib><creatorcontrib>Roekaerts, D.</creatorcontrib><creatorcontrib>Peeters, T.W.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merci, Bart</au><au>Dick, E.</au><au>Vierendeels, J.</au><au>Roekaerts, D.</au><au>Peeters, T.W.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a new cubic turbulence model to piloted and bluff-body diffusion flames</atitle><jtitle>Combustion and flame</jtitle><date>2001-07-01</date><risdate>2001</risdate><volume>126</volume><issue>1</issue><spage>1533</spage><epage>1556</epage><pages>1533-1556</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>A new two-equation turbulence model is described. It combines an algebraic, non-linear expression of the Reynolds stresses in terms of strain rate and vorticity tensor components, with a modified transport equation for the dissipation rate. Thanks to the cubic law for the Reynolds stresses, the influence on turbulence from streamline curvature is accounted for, while the increase in computational costs is small. The classical transport equation for the dissipation rate is altered, in order to bring more physics into this equation. As a result, more realistic values for the turbulence quantities are obtained. A new low-Reynolds source term has been introduced and a model parameter is written in terms of dimensionless strain rate and vorticity. The resulting model is firstly applied to the inert turbulent flow over a backward-facing step, demonstrating the quality of the turbulence model. Next, application to an inertly mixing round jet reveals that the spreading rate of the mixture fraction is correctly predicted. Afterwards, a piloted-jet diffusion flame is considered. Finally, inert and reacting flows in a bluff-body burner are addressed. It is illustrated for both reacting test cases that the turbulence model is important with respect to the flame structure. It is more important than the chemistry model for the chosen test cases. Results are compared to what is obtained by linear turbulence models. For the reacting test cases, the conserved scalar approach with pre-assumed β-probability density function (PDF) is used.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0010-2180(01)00272-3</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2001-07, Vol.126 (1), p.1533-1556
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_miscellaneous_26900171
source Elsevier ScienceDirect Journals
subjects Applied sciences
Combustion. Flame
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Theoretical studies
Theoretical studies. Data and constants. Metering
title Application of a new cubic turbulence model to piloted and bluff-body diffusion flames
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20new%20cubic%20turbulence%20model%20to%20piloted%20and%20bluff-body%20diffusion%20flames&rft.jtitle=Combustion%20and%20flame&rft.au=Merci,%20Bart&rft.date=2001-07-01&rft.volume=126&rft.issue=1&rft.spage=1533&rft.epage=1556&rft.pages=1533-1556&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/S0010-2180(01)00272-3&rft_dat=%3Cproquest_cross%3E26900171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26900171&rft_id=info:pmid/&rft_els_id=S0010218001002723&rfr_iscdi=true