Inverse scattering of dielectric cylinders by using radial basis function neural networks
In this paper, a new on‐line inverse scattering methodology, which is based on radial basis function neural networks, is presented. The construction of these networks is implemented by means of the orthogonal least squares algorithm. By applying this training algorithm we can calculate the values of...
Gespeichert in:
Veröffentlicht in: | Radio science 2001-09, Vol.36 (5), p.841-849 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 849 |
---|---|
container_issue | 5 |
container_start_page | 841 |
container_title | Radio science |
container_volume | 36 |
creator | Rekanos, Ioannis T. |
description | In this paper, a new on‐line inverse scattering methodology, which is based on radial basis function neural networks, is presented. The construction of these networks is implemented by means of the orthogonal least squares algorithm. By applying this training algorithm we can calculate the values of the free parameters of the network and also define its structure. Thus a trial‐and‐error strategy concerning the definition of the network size is avoided. In particular, the network is constructed to perform the mapping from scattered‐field measurements to electromagnetic and geometric properties of the scatterer. Although this approach can be applied to various inverse scattering applications, we focus on the reconstruction of cylindrical dielectric scatterers from simulated measurements of the scattered electric field, while transverse magnetic illuminations are used. The objective is to estimate the relative dielectric constant, the size, and the position of the scatterer. In numerical results an investigation of the performance of the network is carried out. After the completion of the training procedure the network can rapidly estimate the scatterer properties, without extreme storage demands. Finally, the robustness of the proposed methodology in inverting measurements that are corrupted by additive white Gaussian noise is examined. |
doi_str_mv | 10.1029/2000RS002545 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26898468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26898468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3771-fb4b98a1644b16321461636a39fedca593cce2f42b2e28d95efbe66f06fb6ead3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpbPwAT4iBgO3YTjyiQgsSAqnlc7Ic54xMQwJ2Qum_J1URYupyr3R63hsOoUNKTilh6owRQqYzQpjgYgsNqOI8yZR63kYDQnieSEn4LtqL8Y0QyoXkA_RyXX9BiICjNW0LwdevuHG49FCBbYO32C4rX5e9wcUSd3EFgim9qXBhoo_YdbVtfVPjGrrQb2toF02Yx32040wV4eA3h-hhfHk_ukpu7ibXo_ObxKZZRhNX8ELlhkrOCypTRrnsQ5pUOSitESq1FpjjrGDA8lIJcAVI6Yh0hQRTpkN0tL77EZrPDmKr3320UFWmhqaLmslc5VzmPTzeCKkQlEjVj56erKkNTYwBnP4I_t2EpaZEr16t_7-653TNF76C5UarpxczLgXtO8m642ML338dE-ZaZmkm9NPtRF_NRuPJNH_Uz-kPC6qQHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551069510</pqid></control><display><type>article</type><title>Inverse scattering of dielectric cylinders by using radial basis function neural networks</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rekanos, Ioannis T.</creator><creatorcontrib>Rekanos, Ioannis T.</creatorcontrib><description>In this paper, a new on‐line inverse scattering methodology, which is based on radial basis function neural networks, is presented. The construction of these networks is implemented by means of the orthogonal least squares algorithm. By applying this training algorithm we can calculate the values of the free parameters of the network and also define its structure. Thus a trial‐and‐error strategy concerning the definition of the network size is avoided. In particular, the network is constructed to perform the mapping from scattered‐field measurements to electromagnetic and geometric properties of the scatterer. Although this approach can be applied to various inverse scattering applications, we focus on the reconstruction of cylindrical dielectric scatterers from simulated measurements of the scattered electric field, while transverse magnetic illuminations are used. The objective is to estimate the relative dielectric constant, the size, and the position of the scatterer. In numerical results an investigation of the performance of the network is carried out. After the completion of the training procedure the network can rapidly estimate the scatterer properties, without extreme storage demands. Finally, the robustness of the proposed methodology in inverting measurements that are corrupted by additive white Gaussian noise is examined.</description><identifier>ISSN: 0048-6604</identifier><identifier>EISSN: 1944-799X</identifier><identifier>DOI: 10.1029/2000RS002545</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Algorithms ; Computer simulation ; Estimates ; Inverse scattering ; Networks ; Neural networks ; Radial basis function ; Training</subject><ispartof>Radio science, 2001-09, Vol.36 (5), p.841-849</ispartof><rights>Copyright 2001 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3771-fb4b98a1644b16321461636a39fedca593cce2f42b2e28d95efbe66f06fb6ead3</citedby><cites>FETCH-LOGICAL-c3771-fb4b98a1644b16321461636a39fedca593cce2f42b2e28d95efbe66f06fb6ead3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2000RS002545$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2000RS002545$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Rekanos, Ioannis T.</creatorcontrib><title>Inverse scattering of dielectric cylinders by using radial basis function neural networks</title><title>Radio science</title><addtitle>Radio Sci</addtitle><description>In this paper, a new on‐line inverse scattering methodology, which is based on radial basis function neural networks, is presented. The construction of these networks is implemented by means of the orthogonal least squares algorithm. By applying this training algorithm we can calculate the values of the free parameters of the network and also define its structure. Thus a trial‐and‐error strategy concerning the definition of the network size is avoided. In particular, the network is constructed to perform the mapping from scattered‐field measurements to electromagnetic and geometric properties of the scatterer. Although this approach can be applied to various inverse scattering applications, we focus on the reconstruction of cylindrical dielectric scatterers from simulated measurements of the scattered electric field, while transverse magnetic illuminations are used. The objective is to estimate the relative dielectric constant, the size, and the position of the scatterer. In numerical results an investigation of the performance of the network is carried out. After the completion of the training procedure the network can rapidly estimate the scatterer properties, without extreme storage demands. Finally, the robustness of the proposed methodology in inverting measurements that are corrupted by additive white Gaussian noise is examined.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Estimates</subject><subject>Inverse scattering</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Radial basis function</subject><subject>Training</subject><issn>0048-6604</issn><issn>1944-799X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpbPwAT4iBgO3YTjyiQgsSAqnlc7Ic54xMQwJ2Qum_J1URYupyr3R63hsOoUNKTilh6owRQqYzQpjgYgsNqOI8yZR63kYDQnieSEn4LtqL8Y0QyoXkA_RyXX9BiICjNW0LwdevuHG49FCBbYO32C4rX5e9wcUSd3EFgim9qXBhoo_YdbVtfVPjGrrQb2toF02Yx32040wV4eA3h-hhfHk_ukpu7ibXo_ObxKZZRhNX8ELlhkrOCypTRrnsQ5pUOSitESq1FpjjrGDA8lIJcAVI6Yh0hQRTpkN0tL77EZrPDmKr3320UFWmhqaLmslc5VzmPTzeCKkQlEjVj56erKkNTYwBnP4I_t2EpaZEr16t_7-653TNF76C5UarpxczLgXtO8m642ML338dE-ZaZmkm9NPtRF_NRuPJNH_Uz-kPC6qQHQ</recordid><startdate>200109</startdate><enddate>200109</enddate><creator>Rekanos, Ioannis T.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200109</creationdate><title>Inverse scattering of dielectric cylinders by using radial basis function neural networks</title><author>Rekanos, Ioannis T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3771-fb4b98a1644b16321461636a39fedca593cce2f42b2e28d95efbe66f06fb6ead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Estimates</topic><topic>Inverse scattering</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Radial basis function</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rekanos, Ioannis T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Radio science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rekanos, Ioannis T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse scattering of dielectric cylinders by using radial basis function neural networks</atitle><jtitle>Radio science</jtitle><addtitle>Radio Sci</addtitle><date>2001-09</date><risdate>2001</risdate><volume>36</volume><issue>5</issue><spage>841</spage><epage>849</epage><pages>841-849</pages><issn>0048-6604</issn><eissn>1944-799X</eissn><abstract>In this paper, a new on‐line inverse scattering methodology, which is based on radial basis function neural networks, is presented. The construction of these networks is implemented by means of the orthogonal least squares algorithm. By applying this training algorithm we can calculate the values of the free parameters of the network and also define its structure. Thus a trial‐and‐error strategy concerning the definition of the network size is avoided. In particular, the network is constructed to perform the mapping from scattered‐field measurements to electromagnetic and geometric properties of the scatterer. Although this approach can be applied to various inverse scattering applications, we focus on the reconstruction of cylindrical dielectric scatterers from simulated measurements of the scattered electric field, while transverse magnetic illuminations are used. The objective is to estimate the relative dielectric constant, the size, and the position of the scatterer. In numerical results an investigation of the performance of the network is carried out. After the completion of the training procedure the network can rapidly estimate the scatterer properties, without extreme storage demands. Finally, the robustness of the proposed methodology in inverting measurements that are corrupted by additive white Gaussian noise is examined.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2000RS002545</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-6604 |
ispartof | Radio science, 2001-09, Vol.36 (5), p.841-849 |
issn | 0048-6604 1944-799X |
language | eng |
recordid | cdi_proquest_miscellaneous_26898468 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Computer simulation Estimates Inverse scattering Networks Neural networks Radial basis function Training |
title | Inverse scattering of dielectric cylinders by using radial basis function neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20scattering%20of%20dielectric%20cylinders%20by%20using%20radial%20basis%20function%20neural%20networks&rft.jtitle=Radio%20science&rft.au=Rekanos,%20Ioannis%20T.&rft.date=2001-09&rft.volume=36&rft.issue=5&rft.spage=841&rft.epage=849&rft.pages=841-849&rft.issn=0048-6604&rft.eissn=1944-799X&rft_id=info:doi/10.1029/2000RS002545&rft_dat=%3Cproquest_cross%3E26898468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551069510&rft_id=info:pmid/&rfr_iscdi=true |