Inverse scattering of dielectric cylinders by using radial basis function neural networks

In this paper, a new on‐line inverse scattering methodology, which is based on radial basis function neural networks, is presented. The construction of these networks is implemented by means of the orthogonal least squares algorithm. By applying this training algorithm we can calculate the values of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radio science 2001-09, Vol.36 (5), p.841-849
1. Verfasser: Rekanos, Ioannis T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 849
container_issue 5
container_start_page 841
container_title Radio science
container_volume 36
creator Rekanos, Ioannis T.
description In this paper, a new on‐line inverse scattering methodology, which is based on radial basis function neural networks, is presented. The construction of these networks is implemented by means of the orthogonal least squares algorithm. By applying this training algorithm we can calculate the values of the free parameters of the network and also define its structure. Thus a trial‐and‐error strategy concerning the definition of the network size is avoided. In particular, the network is constructed to perform the mapping from scattered‐field measurements to electromagnetic and geometric properties of the scatterer. Although this approach can be applied to various inverse scattering applications, we focus on the reconstruction of cylindrical dielectric scatterers from simulated measurements of the scattered electric field, while transverse magnetic illuminations are used. The objective is to estimate the relative dielectric constant, the size, and the position of the scatterer. In numerical results an investigation of the performance of the network is carried out. After the completion of the training procedure the network can rapidly estimate the scatterer properties, without extreme storage demands. Finally, the robustness of the proposed methodology in inverting measurements that are corrupted by additive white Gaussian noise is examined.
doi_str_mv 10.1029/2000RS002545
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26898468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26898468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3771-fb4b98a1644b16321461636a39fedca593cce2f42b2e28d95efbe66f06fb6ead3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpbPwAT4iBgO3YTjyiQgsSAqnlc7Ic54xMQwJ2Qum_J1URYupyr3R63hsOoUNKTilh6owRQqYzQpjgYgsNqOI8yZR63kYDQnieSEn4LtqL8Y0QyoXkA_RyXX9BiICjNW0LwdevuHG49FCBbYO32C4rX5e9wcUSd3EFgim9qXBhoo_YdbVtfVPjGrrQb2toF02Yx32040wV4eA3h-hhfHk_ukpu7ibXo_ObxKZZRhNX8ELlhkrOCypTRrnsQ5pUOSitESq1FpjjrGDA8lIJcAVI6Yh0hQRTpkN0tL77EZrPDmKr3320UFWmhqaLmslc5VzmPTzeCKkQlEjVj56erKkNTYwBnP4I_t2EpaZEr16t_7-653TNF76C5UarpxczLgXtO8m642ML338dE-ZaZmkm9NPtRF_NRuPJNH_Uz-kPC6qQHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551069510</pqid></control><display><type>article</type><title>Inverse scattering of dielectric cylinders by using radial basis function neural networks</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rekanos, Ioannis T.</creator><creatorcontrib>Rekanos, Ioannis T.</creatorcontrib><description>In this paper, a new on‐line inverse scattering methodology, which is based on radial basis function neural networks, is presented. The construction of these networks is implemented by means of the orthogonal least squares algorithm. By applying this training algorithm we can calculate the values of the free parameters of the network and also define its structure. Thus a trial‐and‐error strategy concerning the definition of the network size is avoided. In particular, the network is constructed to perform the mapping from scattered‐field measurements to electromagnetic and geometric properties of the scatterer. Although this approach can be applied to various inverse scattering applications, we focus on the reconstruction of cylindrical dielectric scatterers from simulated measurements of the scattered electric field, while transverse magnetic illuminations are used. The objective is to estimate the relative dielectric constant, the size, and the position of the scatterer. In numerical results an investigation of the performance of the network is carried out. After the completion of the training procedure the network can rapidly estimate the scatterer properties, without extreme storage demands. Finally, the robustness of the proposed methodology in inverting measurements that are corrupted by additive white Gaussian noise is examined.</description><identifier>ISSN: 0048-6604</identifier><identifier>EISSN: 1944-799X</identifier><identifier>DOI: 10.1029/2000RS002545</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Algorithms ; Computer simulation ; Estimates ; Inverse scattering ; Networks ; Neural networks ; Radial basis function ; Training</subject><ispartof>Radio science, 2001-09, Vol.36 (5), p.841-849</ispartof><rights>Copyright 2001 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3771-fb4b98a1644b16321461636a39fedca593cce2f42b2e28d95efbe66f06fb6ead3</citedby><cites>FETCH-LOGICAL-c3771-fb4b98a1644b16321461636a39fedca593cce2f42b2e28d95efbe66f06fb6ead3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2000RS002545$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2000RS002545$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Rekanos, Ioannis T.</creatorcontrib><title>Inverse scattering of dielectric cylinders by using radial basis function neural networks</title><title>Radio science</title><addtitle>Radio Sci</addtitle><description>In this paper, a new on‐line inverse scattering methodology, which is based on radial basis function neural networks, is presented. The construction of these networks is implemented by means of the orthogonal least squares algorithm. By applying this training algorithm we can calculate the values of the free parameters of the network and also define its structure. Thus a trial‐and‐error strategy concerning the definition of the network size is avoided. In particular, the network is constructed to perform the mapping from scattered‐field measurements to electromagnetic and geometric properties of the scatterer. Although this approach can be applied to various inverse scattering applications, we focus on the reconstruction of cylindrical dielectric scatterers from simulated measurements of the scattered electric field, while transverse magnetic illuminations are used. The objective is to estimate the relative dielectric constant, the size, and the position of the scatterer. In numerical results an investigation of the performance of the network is carried out. After the completion of the training procedure the network can rapidly estimate the scatterer properties, without extreme storage demands. Finally, the robustness of the proposed methodology in inverting measurements that are corrupted by additive white Gaussian noise is examined.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Estimates</subject><subject>Inverse scattering</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Radial basis function</subject><subject>Training</subject><issn>0048-6604</issn><issn>1944-799X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpbPwAT4iBgO3YTjyiQgsSAqnlc7Ic54xMQwJ2Qum_J1URYupyr3R63hsOoUNKTilh6owRQqYzQpjgYgsNqOI8yZR63kYDQnieSEn4LtqL8Y0QyoXkA_RyXX9BiICjNW0LwdevuHG49FCBbYO32C4rX5e9wcUSd3EFgim9qXBhoo_YdbVtfVPjGrrQb2toF02Yx32040wV4eA3h-hhfHk_ukpu7ibXo_ObxKZZRhNX8ELlhkrOCypTRrnsQ5pUOSitESq1FpjjrGDA8lIJcAVI6Yh0hQRTpkN0tL77EZrPDmKr3320UFWmhqaLmslc5VzmPTzeCKkQlEjVj56erKkNTYwBnP4I_t2EpaZEr16t_7-653TNF76C5UarpxczLgXtO8m642ML338dE-ZaZmkm9NPtRF_NRuPJNH_Uz-kPC6qQHQ</recordid><startdate>200109</startdate><enddate>200109</enddate><creator>Rekanos, Ioannis T.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200109</creationdate><title>Inverse scattering of dielectric cylinders by using radial basis function neural networks</title><author>Rekanos, Ioannis T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3771-fb4b98a1644b16321461636a39fedca593cce2f42b2e28d95efbe66f06fb6ead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Estimates</topic><topic>Inverse scattering</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Radial basis function</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rekanos, Ioannis T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Radio science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rekanos, Ioannis T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse scattering of dielectric cylinders by using radial basis function neural networks</atitle><jtitle>Radio science</jtitle><addtitle>Radio Sci</addtitle><date>2001-09</date><risdate>2001</risdate><volume>36</volume><issue>5</issue><spage>841</spage><epage>849</epage><pages>841-849</pages><issn>0048-6604</issn><eissn>1944-799X</eissn><abstract>In this paper, a new on‐line inverse scattering methodology, which is based on radial basis function neural networks, is presented. The construction of these networks is implemented by means of the orthogonal least squares algorithm. By applying this training algorithm we can calculate the values of the free parameters of the network and also define its structure. Thus a trial‐and‐error strategy concerning the definition of the network size is avoided. In particular, the network is constructed to perform the mapping from scattered‐field measurements to electromagnetic and geometric properties of the scatterer. Although this approach can be applied to various inverse scattering applications, we focus on the reconstruction of cylindrical dielectric scatterers from simulated measurements of the scattered electric field, while transverse magnetic illuminations are used. The objective is to estimate the relative dielectric constant, the size, and the position of the scatterer. In numerical results an investigation of the performance of the network is carried out. After the completion of the training procedure the network can rapidly estimate the scatterer properties, without extreme storage demands. Finally, the robustness of the proposed methodology in inverting measurements that are corrupted by additive white Gaussian noise is examined.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2000RS002545</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0048-6604
ispartof Radio science, 2001-09, Vol.36 (5), p.841-849
issn 0048-6604
1944-799X
language eng
recordid cdi_proquest_miscellaneous_26898468
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Computer simulation
Estimates
Inverse scattering
Networks
Neural networks
Radial basis function
Training
title Inverse scattering of dielectric cylinders by using radial basis function neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20scattering%20of%20dielectric%20cylinders%20by%20using%20radial%20basis%20function%20neural%20networks&rft.jtitle=Radio%20science&rft.au=Rekanos,%20Ioannis%20T.&rft.date=2001-09&rft.volume=36&rft.issue=5&rft.spage=841&rft.epage=849&rft.pages=841-849&rft.issn=0048-6604&rft.eissn=1944-799X&rft_id=info:doi/10.1029/2000RS002545&rft_dat=%3Cproquest_cross%3E26898468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551069510&rft_id=info:pmid/&rfr_iscdi=true