Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network

We proposed some novel classification features for the microcalcification of mammograms, and selected the effective combined features using Karhunen–Loeve (KL) transformation followed by the restricted Euclidean distance measure, and finally applied the proposed trend-oriented radial basis function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 1999-05, Vol.32 (5), p.891-903
Hauptverfasser: Tsujii, Osamu, Freedman, Matthew T., Mun, Seong K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 903
container_issue 5
container_start_page 891
container_title Pattern recognition
container_volume 32
creator Tsujii, Osamu
Freedman, Matthew T.
Mun, Seong K.
description We proposed some novel classification features for the microcalcification of mammograms, and selected the effective combined features using Karhunen–Loeve (KL) transformation followed by the restricted Euclidean distance measure, and finally applied the proposed trend-oriented radial basis function neural network (TRBF-NN) to distinguish the benign group from the malignant group and evaluate the performance with the round-robin method. The two-dimensional KL features were more distinguishable than the raw two-dimensional features. The TRBF-NN was able to define the more generalized distribution than those distributions defined by the conventional RBF-NNs. According to the receiver operating characteristic analysis, the proposed system performed better than two trained radiologists.
doi_str_mv 10.1016/S0031-3203(98)00099-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26887975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320398000995</els_id><sourcerecordid>399904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ff295d3506ef510cdd166bf480f7b9e8202221cfa5753514fe947fb036525c813</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhtRcI3-BKEPInoYU90z_TEnkUVNIOAhem56-2NpnemOXTMJ-ff27oZ4zKmg6ql6qfcl5C2DTwyYPL8G6FnXc-g_jPojAIxjJ56RDdOq7wQb-HOyeURekleIvwGYaoMNWbeTRUwxObukkmmJdE6uFmcn99hFmjL1aZ8WO9HZznPZVzsjXTHlPV1qyL4rNYW8BE-r9alhO4sJaVyzO97NYa2tm8NyV-qf1-RFtBOGNw_1jPz69vXn9qK7-vH9cvvlqnPDIJYuRj4K3wuQIQoGznsm5S4OGqLajUFz4JwzF61Qom-PxjAOKu6gl4ILp1l_Rt6f7t7U8ncNuJg5oQvTZHMoKxoutVZjW34SZAMMWsoGihPYPEKsIZqbmmZb7w0Dc0jDHNMwB6vNqM0xDXMQePcgYLF5G6vNLuH_ZaUGqaBhn09YaK7cplANuuarCz7V4BbjS3pC6B8KaaA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21404866</pqid></control><display><type>article</type><title>Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tsujii, Osamu ; Freedman, Matthew T. ; Mun, Seong K.</creator><creatorcontrib>Tsujii, Osamu ; Freedman, Matthew T. ; Mun, Seong K.</creatorcontrib><description>We proposed some novel classification features for the microcalcification of mammograms, and selected the effective combined features using Karhunen–Loeve (KL) transformation followed by the restricted Euclidean distance measure, and finally applied the proposed trend-oriented radial basis function neural network (TRBF-NN) to distinguish the benign group from the malignant group and evaluate the performance with the round-robin method. The two-dimensional KL features were more distinguishable than the raw two-dimensional features. The TRBF-NN was able to define the more generalized distribution than those distributions defined by the conventional RBF-NNs. According to the receiver operating characteristic analysis, the proposed system performed better than two trained radiologists.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/S0031-3203(98)00099-5</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Calcification (biochemistry) ; Classification ; Computer science; control theory; systems ; Computerized, statistical medical data processing and models in biomedicine ; Connectionism. Neural networks ; Euclidean distance measure ; Exact sciences and technology ; Feature selection ; Karhunen–Loeve transformation ; Mammograms ; Mammography ; Mathematical transformations ; Medical management aid. Diagnosis aid ; Medical sciences ; Microcalcification ; Neural network ; Neural networks ; Pattern recognition. Digital image processing. Computational geometry ; Radial basis function ; Receiver operating characteristic ; Round-robin method ; Two dimensional</subject><ispartof>Pattern recognition, 1999-05, Vol.32 (5), p.891-903</ispartof><rights>1999 Pattern Recognition Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-ff295d3506ef510cdd166bf480f7b9e8202221cfa5753514fe947fb036525c813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0031320398000995$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1774670$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsujii, Osamu</creatorcontrib><creatorcontrib>Freedman, Matthew T.</creatorcontrib><creatorcontrib>Mun, Seong K.</creatorcontrib><title>Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network</title><title>Pattern recognition</title><description>We proposed some novel classification features for the microcalcification of mammograms, and selected the effective combined features using Karhunen–Loeve (KL) transformation followed by the restricted Euclidean distance measure, and finally applied the proposed trend-oriented radial basis function neural network (TRBF-NN) to distinguish the benign group from the malignant group and evaluate the performance with the round-robin method. The two-dimensional KL features were more distinguishable than the raw two-dimensional features. The TRBF-NN was able to define the more generalized distribution than those distributions defined by the conventional RBF-NNs. According to the receiver operating characteristic analysis, the proposed system performed better than two trained radiologists.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Calcification (biochemistry)</subject><subject>Classification</subject><subject>Computer science; control theory; systems</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Connectionism. Neural networks</subject><subject>Euclidean distance measure</subject><subject>Exact sciences and technology</subject><subject>Feature selection</subject><subject>Karhunen–Loeve transformation</subject><subject>Mammograms</subject><subject>Mammography</subject><subject>Mathematical transformations</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Microcalcification</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Radial basis function</subject><subject>Receiver operating characteristic</subject><subject>Round-robin method</subject><subject>Two dimensional</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFEEQhhtRcI3-BKEPInoYU90z_TEnkUVNIOAhem56-2NpnemOXTMJ-ff27oZ4zKmg6ql6qfcl5C2DTwyYPL8G6FnXc-g_jPojAIxjJ56RDdOq7wQb-HOyeURekleIvwGYaoMNWbeTRUwxObukkmmJdE6uFmcn99hFmjL1aZ8WO9HZznPZVzsjXTHlPV1qyL4rNYW8BE-r9alhO4sJaVyzO97NYa2tm8NyV-qf1-RFtBOGNw_1jPz69vXn9qK7-vH9cvvlqnPDIJYuRj4K3wuQIQoGznsm5S4OGqLajUFz4JwzF61Qom-PxjAOKu6gl4ILp1l_Rt6f7t7U8ncNuJg5oQvTZHMoKxoutVZjW34SZAMMWsoGihPYPEKsIZqbmmZb7w0Dc0jDHNMwB6vNqM0xDXMQePcgYLF5G6vNLuH_ZaUGqaBhn09YaK7cplANuuarCz7V4BbjS3pC6B8KaaA0</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Tsujii, Osamu</creator><creator>Freedman, Matthew T.</creator><creator>Mun, Seong K.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990501</creationdate><title>Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network</title><author>Tsujii, Osamu ; Freedman, Matthew T. ; Mun, Seong K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ff295d3506ef510cdd166bf480f7b9e8202221cfa5753514fe947fb036525c813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Calcification (biochemistry)</topic><topic>Classification</topic><topic>Computer science; control theory; systems</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Connectionism. Neural networks</topic><topic>Euclidean distance measure</topic><topic>Exact sciences and technology</topic><topic>Feature selection</topic><topic>Karhunen–Loeve transformation</topic><topic>Mammograms</topic><topic>Mammography</topic><topic>Mathematical transformations</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Microcalcification</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Radial basis function</topic><topic>Receiver operating characteristic</topic><topic>Round-robin method</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsujii, Osamu</creatorcontrib><creatorcontrib>Freedman, Matthew T.</creatorcontrib><creatorcontrib>Mun, Seong K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsujii, Osamu</au><au>Freedman, Matthew T.</au><au>Mun, Seong K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network</atitle><jtitle>Pattern recognition</jtitle><date>1999-05-01</date><risdate>1999</risdate><volume>32</volume><issue>5</issue><spage>891</spage><epage>903</epage><pages>891-903</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>We proposed some novel classification features for the microcalcification of mammograms, and selected the effective combined features using Karhunen–Loeve (KL) transformation followed by the restricted Euclidean distance measure, and finally applied the proposed trend-oriented radial basis function neural network (TRBF-NN) to distinguish the benign group from the malignant group and evaluate the performance with the round-robin method. The two-dimensional KL features were more distinguishable than the raw two-dimensional features. The TRBF-NN was able to define the more generalized distribution than those distributions defined by the conventional RBF-NNs. According to the receiver operating characteristic analysis, the proposed system performed better than two trained radiologists.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0031-3203(98)00099-5</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 1999-05, Vol.32 (5), p.891-903
issn 0031-3203
1873-5142
language eng
recordid cdi_proquest_miscellaneous_26887975
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Artificial intelligence
Biological and medical sciences
Calcification (biochemistry)
Classification
Computer science
control theory
systems
Computerized, statistical medical data processing and models in biomedicine
Connectionism. Neural networks
Euclidean distance measure
Exact sciences and technology
Feature selection
Karhunen–Loeve transformation
Mammograms
Mammography
Mathematical transformations
Medical management aid. Diagnosis aid
Medical sciences
Microcalcification
Neural network
Neural networks
Pattern recognition. Digital image processing. Computational geometry
Radial basis function
Receiver operating characteristic
Round-robin method
Two dimensional
title Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20microcalcifications%20in%20digital%20mammograms%20using%20trend-oriented%20radial%20basis%20function%20neural%20network&rft.jtitle=Pattern%20recognition&rft.au=Tsujii,%20Osamu&rft.date=1999-05-01&rft.volume=32&rft.issue=5&rft.spage=891&rft.epage=903&rft.pages=891-903&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/S0031-3203(98)00099-5&rft_dat=%3Cproquest_cross%3E399904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21404866&rft_id=info:pmid/&rft_els_id=S0031320398000995&rfr_iscdi=true