Applying an evolutionary algorithm to telecommunication network design

This paper deals with the application of evolutionary computation to telecommunication network design. Design of a two-layer network is considered, where the upper-layer (UL) network uses resources of the lower-layer (LL) network. UL links determine demands for the LL and are implemented using LL pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2001-08, Vol.5 (4), p.309-322
Hauptverfasser: Arabas, J., Kozdrowski, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue 4
container_start_page 309
container_title IEEE transactions on evolutionary computation
container_volume 5
creator Arabas, J.
Kozdrowski, S.
description This paper deals with the application of evolutionary computation to telecommunication network design. Design of a two-layer network is considered, where the upper-layer (UL) network uses resources of the lower-layer (LL) network. UL links determine demands for the LL and are implemented using LL paths (admissible paths). Within a fixed LL network topology, given the demands and admissible paths, we aim to find the LL link capacities for implementing the UL links, minimizing the cost of the LL. Robust design issues are also taken into consideration, allowing for failure of a certain part of the LL and postulating that, after some re-allocation in the LL, demands are still realized to an assumed extent. An algorithm based on an evolutionary technique is introduced, with problem-specific genetic operators to improve computing efficiency. A theoretical study of properties of the operators is made and several experiments are performed to tune the parameters of the algorithm. Finally, its performance is compared with other design techniques, including integer programming.
doi_str_mv 10.1109/4235.942526
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_26887223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>942526</ieee_id><sourcerecordid>2432596431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-f7a5b50de528db8c98740407c385fb68796467b30c77b8e5b59679559519aa733</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAiCs6PkzdPRUQPUk3SfLw5juFUELwoeCtpls7MNplJq_jfm7Eh4kFPCeSXh7x5suwIo0uMkbyipGSXkhJG-FY2wpLiAiHCt9MegSyEgOfdbC_GBUKYMixH2XS8XLaf1s1z5XLz7tuht96p8Jmrdu6D7V-6vPd5b1qjfdcNzmq1Erkz_YcPr_nMRDt3B9lOo9poDjfrfvY0vX6c3Bb3Dzd3k_F9oSlCfdEIxWqGZoYRmNWgJQiKKBK6BNbUHITklIu6RFqIGkyykgvJmExvVUqU5X52vs5dBv82mNhXnY3atK1yxg-xkpjyFIFYkmd_SgIUgMvyf8gBBCErePILLvwQXBq3AqACA-E0oYs10sHHGExTLYPt0n9WGFWrjqpVR9W6o6RPN5EqatU2QTlt448rgNLwiR2vmTXGfJ9uMr4ACpeXOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884718264</pqid></control><display><type>article</type><title>Applying an evolutionary algorithm to telecommunication network design</title><source>IEEE Electronic Library (IEL)</source><creator>Arabas, J. ; Kozdrowski, S.</creator><creatorcontrib>Arabas, J. ; Kozdrowski, S.</creatorcontrib><description>This paper deals with the application of evolutionary computation to telecommunication network design. Design of a two-layer network is considered, where the upper-layer (UL) network uses resources of the lower-layer (LL) network. UL links determine demands for the LL and are implemented using LL paths (admissible paths). Within a fixed LL network topology, given the demands and admissible paths, we aim to find the LL link capacities for implementing the UL links, minimizing the cost of the LL. Robust design issues are also taken into consideration, allowing for failure of a certain part of the LL and postulating that, after some re-allocation in the LL, demands are still realized to an assumed extent. An algorithm based on an evolutionary technique is introduced, with problem-specific genetic operators to improve computing efficiency. A theoretical study of properties of the operators is made and several experiments are performed to tune the parameters of the algorithm. Finally, its performance is compared with other design techniques, including integer programming.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/4235.942526</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Asynchronous transfer mode ; Biological cells ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Costs ; Demand ; Evolutionary algorithms ; Evolutionary computation ; Exact sciences and technology ; Genetics ; Integer programming ; Linear programming ; Links ; Marketing ; Networks ; Operators ; Protection ; Robustness ; Software ; Studies ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn ; Vectors</subject><ispartof>IEEE transactions on evolutionary computation, 2001-08, Vol.5 (4), p.309-322</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-f7a5b50de528db8c98740407c385fb68796467b30c77b8e5b59679559519aa733</citedby><cites>FETCH-LOGICAL-c400t-f7a5b50de528db8c98740407c385fb68796467b30c77b8e5b59679559519aa733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/942526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/942526$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1080559$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Arabas, J.</creatorcontrib><creatorcontrib>Kozdrowski, S.</creatorcontrib><title>Applying an evolutionary algorithm to telecommunication network design</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>This paper deals with the application of evolutionary computation to telecommunication network design. Design of a two-layer network is considered, where the upper-layer (UL) network uses resources of the lower-layer (LL) network. UL links determine demands for the LL and are implemented using LL paths (admissible paths). Within a fixed LL network topology, given the demands and admissible paths, we aim to find the LL link capacities for implementing the UL links, minimizing the cost of the LL. Robust design issues are also taken into consideration, allowing for failure of a certain part of the LL and postulating that, after some re-allocation in the LL, demands are still realized to an assumed extent. An algorithm based on an evolutionary technique is introduced, with problem-specific genetic operators to improve computing efficiency. A theoretical study of properties of the operators is made and several experiments are performed to tune the parameters of the algorithm. Finally, its performance is compared with other design techniques, including integer programming.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Asynchronous transfer mode</subject><subject>Biological cells</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Costs</subject><subject>Demand</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Exact sciences and technology</subject><subject>Genetics</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Links</subject><subject>Marketing</subject><subject>Networks</subject><subject>Operators</subject><subject>Protection</subject><subject>Robustness</subject><subject>Software</subject><subject>Studies</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><subject>Vectors</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c1LwzAYBvAiCs6PkzdPRUQPUk3SfLw5juFUELwoeCtpls7MNplJq_jfm7Eh4kFPCeSXh7x5suwIo0uMkbyipGSXkhJG-FY2wpLiAiHCt9MegSyEgOfdbC_GBUKYMixH2XS8XLaf1s1z5XLz7tuht96p8Jmrdu6D7V-6vPd5b1qjfdcNzmq1Erkz_YcPr_nMRDt3B9lOo9poDjfrfvY0vX6c3Bb3Dzd3k_F9oSlCfdEIxWqGZoYRmNWgJQiKKBK6BNbUHITklIu6RFqIGkyykgvJmExvVUqU5X52vs5dBv82mNhXnY3atK1yxg-xkpjyFIFYkmd_SgIUgMvyf8gBBCErePILLvwQXBq3AqACA-E0oYs10sHHGExTLYPt0n9WGFWrjqpVR9W6o6RPN5EqatU2QTlt448rgNLwiR2vmTXGfJ9uMr4ACpeXOA</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Arabas, J.</creator><creator>Kozdrowski, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010801</creationdate><title>Applying an evolutionary algorithm to telecommunication network design</title><author>Arabas, J. ; Kozdrowski, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-f7a5b50de528db8c98740407c385fb68796467b30c77b8e5b59679559519aa733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Asynchronous transfer mode</topic><topic>Biological cells</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Costs</topic><topic>Demand</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Exact sciences and technology</topic><topic>Genetics</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Links</topic><topic>Marketing</topic><topic>Networks</topic><topic>Operators</topic><topic>Protection</topic><topic>Robustness</topic><topic>Software</topic><topic>Studies</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arabas, J.</creatorcontrib><creatorcontrib>Kozdrowski, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arabas, J.</au><au>Kozdrowski, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying an evolutionary algorithm to telecommunication network design</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2001-08-01</date><risdate>2001</risdate><volume>5</volume><issue>4</issue><spage>309</spage><epage>322</epage><pages>309-322</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>This paper deals with the application of evolutionary computation to telecommunication network design. Design of a two-layer network is considered, where the upper-layer (UL) network uses resources of the lower-layer (LL) network. UL links determine demands for the LL and are implemented using LL paths (admissible paths). Within a fixed LL network topology, given the demands and admissible paths, we aim to find the LL link capacities for implementing the UL links, minimizing the cost of the LL. Robust design issues are also taken into consideration, allowing for failure of a certain part of the LL and postulating that, after some re-allocation in the LL, demands are still realized to an assumed extent. An algorithm based on an evolutionary technique is introduced, with problem-specific genetic operators to improve computing efficiency. A theoretical study of properties of the operators is made and several experiments are performed to tune the parameters of the algorithm. Finally, its performance is compared with other design techniques, including integer programming.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/4235.942526</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2001-08, Vol.5 (4), p.309-322
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_miscellaneous_26887223
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Applied sciences
Asynchronous transfer mode
Biological cells
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Costs
Demand
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Genetics
Integer programming
Linear programming
Links
Marketing
Networks
Operators
Protection
Robustness
Software
Studies
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
Vectors
title Applying an evolutionary algorithm to telecommunication network design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20an%20evolutionary%20algorithm%20to%20telecommunication%20network%20design&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Arabas,%20J.&rft.date=2001-08-01&rft.volume=5&rft.issue=4&rft.spage=309&rft.epage=322&rft.pages=309-322&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/4235.942526&rft_dat=%3Cproquest_RIE%3E2432596431%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884718264&rft_id=info:pmid/&rft_ieee_id=942526&rfr_iscdi=true