TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars

Plant development is highly dependent on energy levels. TARGET OF RAPAMYCIN (TOR) activates the proximal root meristem to promote root development in response to photosynthesis-derived sugars during photomorphogenesis in Arabidopsis thaliana . However, the mechanisms of how root tip homeostasis is m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature plants 2022-07, Vol.8 (7), p.792-801
Hauptverfasser: Zhang, Hao, Guo, Lin, Li, Yongpeng, Zhao, Dan, Liu, Luping, Chang, Wenwen, Zhang, Ke, Zheng, Yichao, Hou, Jiajie, Fu, Chenghao, Zhang, Ying, Zhang, Baowen, Ma, Yuru, Niu, Yanxiao, Zhang, Kang, Xing, Jihong, Cui, Sujuan, Wang, Fengru, Tan, Ke, Zheng, Shuzhi, Tang, Wenqiang, Dong, Jingao, Liu, Xigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 801
container_issue 7
container_start_page 792
container_title Nature plants
container_volume 8
creator Zhang, Hao
Guo, Lin
Li, Yongpeng
Zhao, Dan
Liu, Luping
Chang, Wenwen
Zhang, Ke
Zheng, Yichao
Hou, Jiajie
Fu, Chenghao
Zhang, Ying
Zhang, Baowen
Ma, Yuru
Niu, Yanxiao
Zhang, Kang
Xing, Jihong
Cui, Sujuan
Wang, Fengru
Tan, Ke
Zheng, Shuzhi
Tang, Wenqiang
Dong, Jingao
Liu, Xigang
description Plant development is highly dependent on energy levels. TARGET OF RAPAMYCIN (TOR) activates the proximal root meristem to promote root development in response to photosynthesis-derived sugars during photomorphogenesis in Arabidopsis thaliana . However, the mechanisms of how root tip homeostasis is maintained to ensure proper root cap structure and gravitropism are unknown. PLETHORA (PLT) transcription factors are pivotal for the root apical meristem (RAM) identity by forming gradients, but how PLT gradients are established and maintained, and their roles in COL development are not well known. We demonstrate that endogenous sucrose induces TOPOISOMERASE1α ( TOP1α ) expression during the skotomorphogenesis-to-photomorphogenesis transition. TOP1α fine-tunes TOR expression in the root tip columella. TOR maintains columella stem cell identity correlating with reduced quiescent centre cell division in a WUSCHEL RELATED HOMEOBOX5 -independent manner. Meanwhile, TOR promotes PLT2 expression and phosphorylates and stabilizes PLT2 to maintain its gradient consistent with TOR expression pattern. PLT2 controls cell division and amyloplast formation to regulate columella development and gravitropism. This elaborate mechanism helps maintain root tip homeostasis and gravitropism in response to energy changes during root development. Photosynthesis promotes the expression of TOPOISOMERASE1α , which in turn represses TARGET OF RAPAMYCIN (TOR) expression at the root tip. Glucose-TOR regulates cell division at the quiescent centre, and phosphorylates and stabilizes PLETHORA2 in columella cells to maintain root tip homeostasis.
doi_str_mv 10.1038/s41477-022-01179-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2688521320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688521320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d16126aa0c2ba78afcc15817596345dbd25ad6aaf991c13065bf8a50312220843</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EolXpBVigSGzYBDx2nDhLVPGSKhVQWVtO4pRUTVw8iVSOxUU4Ew4tD7FgYdma-eb36CPkGOg5UC4vMIIoSULKWEgBkjTc7JEho0L4UiL3f70HZIy4pJRCIgSP6SEZcCEhkZAOycN8dg_vb0FZNSZsu8ZgMJ89hvfTOQtaG9S6alp_AmdtG7TVOni2tbHYaqww6OsG17ZB08PYLbTDI3JQ6hWa8e4ekafrq_nkNpzObu4ml9Mw54lowwJiYLHWNGeZTqQu8xz6rUQa80gUWcGELny_TFPIgdNYZKXUgnJgjFEZ8RE52-aunX3pDLaqrjA3q5VujO1QsVhKwYAz6tHTP-jSdq7x23kqhZSmDHqKbancWURnSrV2Va3dqwKqeudq61x55-rTudr4oZNddJfVpvge-TLsAb4F0LeahXE_f_8T-wFngIss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691909210</pqid></control><display><type>article</type><title>TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Zhang, Hao ; Guo, Lin ; Li, Yongpeng ; Zhao, Dan ; Liu, Luping ; Chang, Wenwen ; Zhang, Ke ; Zheng, Yichao ; Hou, Jiajie ; Fu, Chenghao ; Zhang, Ying ; Zhang, Baowen ; Ma, Yuru ; Niu, Yanxiao ; Zhang, Kang ; Xing, Jihong ; Cui, Sujuan ; Wang, Fengru ; Tan, Ke ; Zheng, Shuzhi ; Tang, Wenqiang ; Dong, Jingao ; Liu, Xigang</creator><creatorcontrib>Zhang, Hao ; Guo, Lin ; Li, Yongpeng ; Zhao, Dan ; Liu, Luping ; Chang, Wenwen ; Zhang, Ke ; Zheng, Yichao ; Hou, Jiajie ; Fu, Chenghao ; Zhang, Ying ; Zhang, Baowen ; Ma, Yuru ; Niu, Yanxiao ; Zhang, Kang ; Xing, Jihong ; Cui, Sujuan ; Wang, Fengru ; Tan, Ke ; Zheng, Shuzhi ; Tang, Wenqiang ; Dong, Jingao ; Liu, Xigang</creatorcontrib><description>Plant development is highly dependent on energy levels. TARGET OF RAPAMYCIN (TOR) activates the proximal root meristem to promote root development in response to photosynthesis-derived sugars during photomorphogenesis in Arabidopsis thaliana . However, the mechanisms of how root tip homeostasis is maintained to ensure proper root cap structure and gravitropism are unknown. PLETHORA (PLT) transcription factors are pivotal for the root apical meristem (RAM) identity by forming gradients, but how PLT gradients are established and maintained, and their roles in COL development are not well known. We demonstrate that endogenous sucrose induces TOPOISOMERASE1α ( TOP1α ) expression during the skotomorphogenesis-to-photomorphogenesis transition. TOP1α fine-tunes TOR expression in the root tip columella. TOR maintains columella stem cell identity correlating with reduced quiescent centre cell division in a WUSCHEL RELATED HOMEOBOX5 -independent manner. Meanwhile, TOR promotes PLT2 expression and phosphorylates and stabilizes PLT2 to maintain its gradient consistent with TOR expression pattern. PLT2 controls cell division and amyloplast formation to regulate columella development and gravitropism. This elaborate mechanism helps maintain root tip homeostasis and gravitropism in response to energy changes during root development. Photosynthesis promotes the expression of TOPOISOMERASE1α , which in turn represses TARGET OF RAPAMYCIN (TOR) expression at the root tip. Glucose-TOR regulates cell division at the quiescent centre, and phosphorylates and stabilizes PLETHORA2 in columella cells to maintain root tip homeostasis.</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-022-01179-x</identifier><identifier>PMID: 35817819</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449/2653 ; 631/449/2653/1974 ; 631/449/448 ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biomedical and Life Sciences ; Cell division ; DNA Topoisomerases, Type I - metabolism ; Energy levels ; Gene Expression Regulation, Plant ; Gravitropism ; Homeostasis ; Life Sciences ; Meristem - metabolism ; Meristems ; Phosphatidylinositol 3-Kinases - metabolism ; Photomorphogenesis ; Photosynthesis ; Plant Roots - metabolism ; Plant Sciences ; Rapamycin ; Root development ; Sirolimus - metabolism ; Skotomorphogenesis ; Stem cells ; Sucrose ; Sugar ; Sugars - metabolism ; TOR protein ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Nature plants, 2022-07, Vol.8 (7), p.792-801</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d16126aa0c2ba78afcc15817596345dbd25ad6aaf991c13065bf8a50312220843</citedby><cites>FETCH-LOGICAL-c375t-d16126aa0c2ba78afcc15817596345dbd25ad6aaf991c13065bf8a50312220843</cites><orcidid>0000-0002-0031-2579 ; 0000-0003-1676-514X ; 0000-0003-4473-2900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-022-01179-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-022-01179-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35817819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><creatorcontrib>Li, Yongpeng</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Liu, Luping</creatorcontrib><creatorcontrib>Chang, Wenwen</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Zheng, Yichao</creatorcontrib><creatorcontrib>Hou, Jiajie</creatorcontrib><creatorcontrib>Fu, Chenghao</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Zhang, Baowen</creatorcontrib><creatorcontrib>Ma, Yuru</creatorcontrib><creatorcontrib>Niu, Yanxiao</creatorcontrib><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Xing, Jihong</creatorcontrib><creatorcontrib>Cui, Sujuan</creatorcontrib><creatorcontrib>Wang, Fengru</creatorcontrib><creatorcontrib>Tan, Ke</creatorcontrib><creatorcontrib>Zheng, Shuzhi</creatorcontrib><creatorcontrib>Tang, Wenqiang</creatorcontrib><creatorcontrib>Dong, Jingao</creatorcontrib><creatorcontrib>Liu, Xigang</creatorcontrib><title>TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><addtitle>Nat Plants</addtitle><description>Plant development is highly dependent on energy levels. TARGET OF RAPAMYCIN (TOR) activates the proximal root meristem to promote root development in response to photosynthesis-derived sugars during photomorphogenesis in Arabidopsis thaliana . However, the mechanisms of how root tip homeostasis is maintained to ensure proper root cap structure and gravitropism are unknown. PLETHORA (PLT) transcription factors are pivotal for the root apical meristem (RAM) identity by forming gradients, but how PLT gradients are established and maintained, and their roles in COL development are not well known. We demonstrate that endogenous sucrose induces TOPOISOMERASE1α ( TOP1α ) expression during the skotomorphogenesis-to-photomorphogenesis transition. TOP1α fine-tunes TOR expression in the root tip columella. TOR maintains columella stem cell identity correlating with reduced quiescent centre cell division in a WUSCHEL RELATED HOMEOBOX5 -independent manner. Meanwhile, TOR promotes PLT2 expression and phosphorylates and stabilizes PLT2 to maintain its gradient consistent with TOR expression pattern. PLT2 controls cell division and amyloplast formation to regulate columella development and gravitropism. This elaborate mechanism helps maintain root tip homeostasis and gravitropism in response to energy changes during root development. Photosynthesis promotes the expression of TOPOISOMERASE1α , which in turn represses TARGET OF RAPAMYCIN (TOR) expression at the root tip. Glucose-TOR regulates cell division at the quiescent centre, and phosphorylates and stabilizes PLETHORA2 in columella cells to maintain root tip homeostasis.</description><subject>631/449/2653</subject><subject>631/449/2653/1974</subject><subject>631/449/448</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Cell division</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>Energy levels</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gravitropism</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Meristem - metabolism</subject><subject>Meristems</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Photomorphogenesis</subject><subject>Photosynthesis</subject><subject>Plant Roots - metabolism</subject><subject>Plant Sciences</subject><subject>Rapamycin</subject><subject>Root development</subject><subject>Sirolimus - metabolism</subject><subject>Skotomorphogenesis</subject><subject>Stem cells</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Sugars - metabolism</subject><subject>TOR protein</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtOwzAQhi0EolXpBVigSGzYBDx2nDhLVPGSKhVQWVtO4pRUTVw8iVSOxUU4Ew4tD7FgYdma-eb36CPkGOg5UC4vMIIoSULKWEgBkjTc7JEho0L4UiL3f70HZIy4pJRCIgSP6SEZcCEhkZAOycN8dg_vb0FZNSZsu8ZgMJ89hvfTOQtaG9S6alp_AmdtG7TVOni2tbHYaqww6OsG17ZB08PYLbTDI3JQ6hWa8e4ekafrq_nkNpzObu4ml9Mw54lowwJiYLHWNGeZTqQu8xz6rUQa80gUWcGELny_TFPIgdNYZKXUgnJgjFEZ8RE52-aunX3pDLaqrjA3q5VujO1QsVhKwYAz6tHTP-jSdq7x23kqhZSmDHqKbancWURnSrV2Va3dqwKqeudq61x55-rTudr4oZNddJfVpvge-TLsAb4F0LeahXE_f_8T-wFngIss</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zhang, Hao</creator><creator>Guo, Lin</creator><creator>Li, Yongpeng</creator><creator>Zhao, Dan</creator><creator>Liu, Luping</creator><creator>Chang, Wenwen</creator><creator>Zhang, Ke</creator><creator>Zheng, Yichao</creator><creator>Hou, Jiajie</creator><creator>Fu, Chenghao</creator><creator>Zhang, Ying</creator><creator>Zhang, Baowen</creator><creator>Ma, Yuru</creator><creator>Niu, Yanxiao</creator><creator>Zhang, Kang</creator><creator>Xing, Jihong</creator><creator>Cui, Sujuan</creator><creator>Wang, Fengru</creator><creator>Tan, Ke</creator><creator>Zheng, Shuzhi</creator><creator>Tang, Wenqiang</creator><creator>Dong, Jingao</creator><creator>Liu, Xigang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0031-2579</orcidid><orcidid>https://orcid.org/0000-0003-1676-514X</orcidid><orcidid>https://orcid.org/0000-0003-4473-2900</orcidid></search><sort><creationdate>20220701</creationdate><title>TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars</title><author>Zhang, Hao ; Guo, Lin ; Li, Yongpeng ; Zhao, Dan ; Liu, Luping ; Chang, Wenwen ; Zhang, Ke ; Zheng, Yichao ; Hou, Jiajie ; Fu, Chenghao ; Zhang, Ying ; Zhang, Baowen ; Ma, Yuru ; Niu, Yanxiao ; Zhang, Kang ; Xing, Jihong ; Cui, Sujuan ; Wang, Fengru ; Tan, Ke ; Zheng, Shuzhi ; Tang, Wenqiang ; Dong, Jingao ; Liu, Xigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d16126aa0c2ba78afcc15817596345dbd25ad6aaf991c13065bf8a50312220843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/449/2653</topic><topic>631/449/2653/1974</topic><topic>631/449/448</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Cell division</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>Energy levels</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gravitropism</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Meristem - metabolism</topic><topic>Meristems</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Photomorphogenesis</topic><topic>Photosynthesis</topic><topic>Plant Roots - metabolism</topic><topic>Plant Sciences</topic><topic>Rapamycin</topic><topic>Root development</topic><topic>Sirolimus - metabolism</topic><topic>Skotomorphogenesis</topic><topic>Stem cells</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Sugars - metabolism</topic><topic>TOR protein</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><creatorcontrib>Li, Yongpeng</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Liu, Luping</creatorcontrib><creatorcontrib>Chang, Wenwen</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Zheng, Yichao</creatorcontrib><creatorcontrib>Hou, Jiajie</creatorcontrib><creatorcontrib>Fu, Chenghao</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Zhang, Baowen</creatorcontrib><creatorcontrib>Ma, Yuru</creatorcontrib><creatorcontrib>Niu, Yanxiao</creatorcontrib><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Xing, Jihong</creatorcontrib><creatorcontrib>Cui, Sujuan</creatorcontrib><creatorcontrib>Wang, Fengru</creatorcontrib><creatorcontrib>Tan, Ke</creatorcontrib><creatorcontrib>Zheng, Shuzhi</creatorcontrib><creatorcontrib>Tang, Wenqiang</creatorcontrib><creatorcontrib>Dong, Jingao</creatorcontrib><creatorcontrib>Liu, Xigang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hao</au><au>Guo, Lin</au><au>Li, Yongpeng</au><au>Zhao, Dan</au><au>Liu, Luping</au><au>Chang, Wenwen</au><au>Zhang, Ke</au><au>Zheng, Yichao</au><au>Hou, Jiajie</au><au>Fu, Chenghao</au><au>Zhang, Ying</au><au>Zhang, Baowen</au><au>Ma, Yuru</au><au>Niu, Yanxiao</au><au>Zhang, Kang</au><au>Xing, Jihong</au><au>Cui, Sujuan</au><au>Wang, Fengru</au><au>Tan, Ke</au><au>Zheng, Shuzhi</au><au>Tang, Wenqiang</au><au>Dong, Jingao</au><au>Liu, Xigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><addtitle>Nat Plants</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>8</volume><issue>7</issue><spage>792</spage><epage>801</epage><pages>792-801</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>Plant development is highly dependent on energy levels. TARGET OF RAPAMYCIN (TOR) activates the proximal root meristem to promote root development in response to photosynthesis-derived sugars during photomorphogenesis in Arabidopsis thaliana . However, the mechanisms of how root tip homeostasis is maintained to ensure proper root cap structure and gravitropism are unknown. PLETHORA (PLT) transcription factors are pivotal for the root apical meristem (RAM) identity by forming gradients, but how PLT gradients are established and maintained, and their roles in COL development are not well known. We demonstrate that endogenous sucrose induces TOPOISOMERASE1α ( TOP1α ) expression during the skotomorphogenesis-to-photomorphogenesis transition. TOP1α fine-tunes TOR expression in the root tip columella. TOR maintains columella stem cell identity correlating with reduced quiescent centre cell division in a WUSCHEL RELATED HOMEOBOX5 -independent manner. Meanwhile, TOR promotes PLT2 expression and phosphorylates and stabilizes PLT2 to maintain its gradient consistent with TOR expression pattern. PLT2 controls cell division and amyloplast formation to regulate columella development and gravitropism. This elaborate mechanism helps maintain root tip homeostasis and gravitropism in response to energy changes during root development. Photosynthesis promotes the expression of TOPOISOMERASE1α , which in turn represses TARGET OF RAPAMYCIN (TOR) expression at the root tip. Glucose-TOR regulates cell division at the quiescent centre, and phosphorylates and stabilizes PLETHORA2 in columella cells to maintain root tip homeostasis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35817819</pmid><doi>10.1038/s41477-022-01179-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0031-2579</orcidid><orcidid>https://orcid.org/0000-0003-1676-514X</orcidid><orcidid>https://orcid.org/0000-0003-4473-2900</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2055-0278
ispartof Nature plants, 2022-07, Vol.8 (7), p.792-801
issn 2055-0278
2055-0278
language eng
recordid cdi_proquest_miscellaneous_2688521320
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/449/2653
631/449/2653/1974
631/449/448
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biomedical and Life Sciences
Cell division
DNA Topoisomerases, Type I - metabolism
Energy levels
Gene Expression Regulation, Plant
Gravitropism
Homeostasis
Life Sciences
Meristem - metabolism
Meristems
Phosphatidylinositol 3-Kinases - metabolism
Photomorphogenesis
Photosynthesis
Plant Roots - metabolism
Plant Sciences
Rapamycin
Root development
Sirolimus - metabolism
Skotomorphogenesis
Stem cells
Sucrose
Sugar
Sugars - metabolism
TOR protein
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
title TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TOP1%CE%B1%20fine-tunes%20TOR-PLT2%20to%20maintain%20root%20tip%20homeostasis%20in%20response%20to%20sugars&rft.jtitle=Nature%20plants&rft.au=Zhang,%20Hao&rft.date=2022-07-01&rft.volume=8&rft.issue=7&rft.spage=792&rft.epage=801&rft.pages=792-801&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-022-01179-x&rft_dat=%3Cproquest_cross%3E2688521320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691909210&rft_id=info:pmid/35817819&rfr_iscdi=true