Electrode Interface Engineering in Lithium–Sulfur Batteries Enabled by a Trifluoroacetamide-Based Electrolyte

The passivation caused by the deposition of the insulating discharge final product, lithium sulfide (Li2S), leads to the instability of the cycle and the rapid capacity fading of lithium–sulfur batteries (LSBs), which restricts the development of LSBs. This paper proposes the employment of trifluoro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-07, Vol.14 (28), p.31814-31823
Hauptverfasser: He, Liang, Shao, Shiyu, Zong, Chuanxin, Hong, Bo, Wang, Mengran, Lai, Yanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31823
container_issue 28
container_start_page 31814
container_title ACS applied materials & interfaces
container_volume 14
creator He, Liang
Shao, Shiyu
Zong, Chuanxin
Hong, Bo
Wang, Mengran
Lai, Yanqing
description The passivation caused by the deposition of the insulating discharge final product, lithium sulfide (Li2S), leads to the instability of the cycle and the rapid capacity fading of lithium–sulfur batteries (LSBs), which restricts the development of LSBs. This paper proposes the employment of trifluoroacetamide (TFA) as an electrolyte additive to alleviate the passivation by increasing the solubility of Li2S. The solubilization effect of TFA on Li2S is attributed to intermolecular hydrogen bonds and O–Li bonds. Li2S in the TFA-based electrolyte exhibits a flower-like 3D deposition behavior, which further alleviates the surface passivation of the electrode and impels conversion kinetics. In addition, the LiF-rich solid electrolyte interface layer can effectively defend the Li metal anode and suppress the growth of Li dendrites. Accordingly, the discharge capacity of the TFA-based battery remains at an excellent 681.2 mA h g–1 after 400 cycles with a Coulombic efficiency of 99% at 0.5 C. After the battery stabilizes, the capacity decay is only 0.036% per cycle. Under harsh conditions, such as high rates (2 C) and high sulfur loadings (5.2 mg cm–2) with lean electrolytes and elevated temperatures (60 °C), TFA-containing batteries exhibited more durable and stable cycling. This paper provides new insights into solving practical problems and gives an impetus in cycle stability for LSBs.
doi_str_mv 10.1021/acsami.2c04397
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2688085660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688085660</sourcerecordid><originalsourceid>FETCH-LOGICAL-a237t-38c5c0f2011111c6a5dce1be1f5dbfcc9b3f5fdab73e5591fb2250b01a607eda3</originalsourceid><addsrcrecordid>eNp1kL1OwzAQxy0EEqWwMmdESCm2E-djpFWBSpUYKLPlOOfiyomL7QzdeAfekCfBVSo2brnT3e--_gjdEjwjmJIHIb3o9IxKnGd1eYYmpM7ztKKMnv_FeX6JrrzfYVxkFLMJsksDMjjbQrLqAzglJCTLfqt7AKf7baL7ZK3Dhx66n6_vt8GowSVzESKqwUdSNAbapDkkItk4rcxgnY0zQjylhXQufKyedphDgGt0oYTxcHPyU_T-tNwsXtL16_Nq8bhOBc3KkGaVZBIrisnRZCFYK4E0QBRrGyVl3WSKqVY0ZQaM1UQ1lDLcYCIKXEIrsim6G-funf0cwAfeaS_BGNGDHTynRVXhihUFjuhsRKWz3jtQfO90J9yBE8yPyvJRWX5SNjbcjw0xz3d2cH385D_4F0C_ftA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688085660</pqid></control><display><type>article</type><title>Electrode Interface Engineering in Lithium–Sulfur Batteries Enabled by a Trifluoroacetamide-Based Electrolyte</title><source>American Chemical Society Journals</source><creator>He, Liang ; Shao, Shiyu ; Zong, Chuanxin ; Hong, Bo ; Wang, Mengran ; Lai, Yanqing</creator><creatorcontrib>He, Liang ; Shao, Shiyu ; Zong, Chuanxin ; Hong, Bo ; Wang, Mengran ; Lai, Yanqing</creatorcontrib><description>The passivation caused by the deposition of the insulating discharge final product, lithium sulfide (Li2S), leads to the instability of the cycle and the rapid capacity fading of lithium–sulfur batteries (LSBs), which restricts the development of LSBs. This paper proposes the employment of trifluoroacetamide (TFA) as an electrolyte additive to alleviate the passivation by increasing the solubility of Li2S. The solubilization effect of TFA on Li2S is attributed to intermolecular hydrogen bonds and O–Li bonds. Li2S in the TFA-based electrolyte exhibits a flower-like 3D deposition behavior, which further alleviates the surface passivation of the electrode and impels conversion kinetics. In addition, the LiF-rich solid electrolyte interface layer can effectively defend the Li metal anode and suppress the growth of Li dendrites. Accordingly, the discharge capacity of the TFA-based battery remains at an excellent 681.2 mA h g–1 after 400 cycles with a Coulombic efficiency of 99% at 0.5 C. After the battery stabilizes, the capacity decay is only 0.036% per cycle. Under harsh conditions, such as high rates (2 C) and high sulfur loadings (5.2 mg cm–2) with lean electrolytes and elevated temperatures (60 °C), TFA-containing batteries exhibited more durable and stable cycling. This paper provides new insights into solving practical problems and gives an impetus in cycle stability for LSBs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c04397</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-07, Vol.14 (28), p.31814-31823</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a237t-38c5c0f2011111c6a5dce1be1f5dbfcc9b3f5fdab73e5591fb2250b01a607eda3</citedby><cites>FETCH-LOGICAL-a237t-38c5c0f2011111c6a5dce1be1f5dbfcc9b3f5fdab73e5591fb2250b01a607eda3</cites><orcidid>0000-0001-9510-5953 ; 0000-0001-7979-5122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c04397$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c04397$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>He, Liang</creatorcontrib><creatorcontrib>Shao, Shiyu</creatorcontrib><creatorcontrib>Zong, Chuanxin</creatorcontrib><creatorcontrib>Hong, Bo</creatorcontrib><creatorcontrib>Wang, Mengran</creatorcontrib><creatorcontrib>Lai, Yanqing</creatorcontrib><title>Electrode Interface Engineering in Lithium–Sulfur Batteries Enabled by a Trifluoroacetamide-Based Electrolyte</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The passivation caused by the deposition of the insulating discharge final product, lithium sulfide (Li2S), leads to the instability of the cycle and the rapid capacity fading of lithium–sulfur batteries (LSBs), which restricts the development of LSBs. This paper proposes the employment of trifluoroacetamide (TFA) as an electrolyte additive to alleviate the passivation by increasing the solubility of Li2S. The solubilization effect of TFA on Li2S is attributed to intermolecular hydrogen bonds and O–Li bonds. Li2S in the TFA-based electrolyte exhibits a flower-like 3D deposition behavior, which further alleviates the surface passivation of the electrode and impels conversion kinetics. In addition, the LiF-rich solid electrolyte interface layer can effectively defend the Li metal anode and suppress the growth of Li dendrites. Accordingly, the discharge capacity of the TFA-based battery remains at an excellent 681.2 mA h g–1 after 400 cycles with a Coulombic efficiency of 99% at 0.5 C. After the battery stabilizes, the capacity decay is only 0.036% per cycle. Under harsh conditions, such as high rates (2 C) and high sulfur loadings (5.2 mg cm–2) with lean electrolytes and elevated temperatures (60 °C), TFA-containing batteries exhibited more durable and stable cycling. This paper provides new insights into solving practical problems and gives an impetus in cycle stability for LSBs.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAQxy0EEqWwMmdESCm2E-djpFWBSpUYKLPlOOfiyomL7QzdeAfekCfBVSo2brnT3e--_gjdEjwjmJIHIb3o9IxKnGd1eYYmpM7ztKKMnv_FeX6JrrzfYVxkFLMJsksDMjjbQrLqAzglJCTLfqt7AKf7baL7ZK3Dhx66n6_vt8GowSVzESKqwUdSNAbapDkkItk4rcxgnY0zQjylhXQufKyedphDgGt0oYTxcHPyU_T-tNwsXtL16_Nq8bhOBc3KkGaVZBIrisnRZCFYK4E0QBRrGyVl3WSKqVY0ZQaM1UQ1lDLcYCIKXEIrsim6G-funf0cwAfeaS_BGNGDHTynRVXhihUFjuhsRKWz3jtQfO90J9yBE8yPyvJRWX5SNjbcjw0xz3d2cH385D_4F0C_ftA</recordid><startdate>20220720</startdate><enddate>20220720</enddate><creator>He, Liang</creator><creator>Shao, Shiyu</creator><creator>Zong, Chuanxin</creator><creator>Hong, Bo</creator><creator>Wang, Mengran</creator><creator>Lai, Yanqing</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9510-5953</orcidid><orcidid>https://orcid.org/0000-0001-7979-5122</orcidid></search><sort><creationdate>20220720</creationdate><title>Electrode Interface Engineering in Lithium–Sulfur Batteries Enabled by a Trifluoroacetamide-Based Electrolyte</title><author>He, Liang ; Shao, Shiyu ; Zong, Chuanxin ; Hong, Bo ; Wang, Mengran ; Lai, Yanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a237t-38c5c0f2011111c6a5dce1be1f5dbfcc9b3f5fdab73e5591fb2250b01a607eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Liang</creatorcontrib><creatorcontrib>Shao, Shiyu</creatorcontrib><creatorcontrib>Zong, Chuanxin</creatorcontrib><creatorcontrib>Hong, Bo</creatorcontrib><creatorcontrib>Wang, Mengran</creatorcontrib><creatorcontrib>Lai, Yanqing</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Liang</au><au>Shao, Shiyu</au><au>Zong, Chuanxin</au><au>Hong, Bo</au><au>Wang, Mengran</au><au>Lai, Yanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrode Interface Engineering in Lithium–Sulfur Batteries Enabled by a Trifluoroacetamide-Based Electrolyte</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-07-20</date><risdate>2022</risdate><volume>14</volume><issue>28</issue><spage>31814</spage><epage>31823</epage><pages>31814-31823</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The passivation caused by the deposition of the insulating discharge final product, lithium sulfide (Li2S), leads to the instability of the cycle and the rapid capacity fading of lithium–sulfur batteries (LSBs), which restricts the development of LSBs. This paper proposes the employment of trifluoroacetamide (TFA) as an electrolyte additive to alleviate the passivation by increasing the solubility of Li2S. The solubilization effect of TFA on Li2S is attributed to intermolecular hydrogen bonds and O–Li bonds. Li2S in the TFA-based electrolyte exhibits a flower-like 3D deposition behavior, which further alleviates the surface passivation of the electrode and impels conversion kinetics. In addition, the LiF-rich solid electrolyte interface layer can effectively defend the Li metal anode and suppress the growth of Li dendrites. Accordingly, the discharge capacity of the TFA-based battery remains at an excellent 681.2 mA h g–1 after 400 cycles with a Coulombic efficiency of 99% at 0.5 C. After the battery stabilizes, the capacity decay is only 0.036% per cycle. Under harsh conditions, such as high rates (2 C) and high sulfur loadings (5.2 mg cm–2) with lean electrolytes and elevated temperatures (60 °C), TFA-containing batteries exhibited more durable and stable cycling. This paper provides new insights into solving practical problems and gives an impetus in cycle stability for LSBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c04397</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9510-5953</orcidid><orcidid>https://orcid.org/0000-0001-7979-5122</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-07, Vol.14 (28), p.31814-31823
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2688085660
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Electrode Interface Engineering in Lithium–Sulfur Batteries Enabled by a Trifluoroacetamide-Based Electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrode%20Interface%20Engineering%20in%20Lithium%E2%80%93Sulfur%20Batteries%20Enabled%20by%20a%20Trifluoroacetamide-Based%20Electrolyte&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=He,%20Liang&rft.date=2022-07-20&rft.volume=14&rft.issue=28&rft.spage=31814&rft.epage=31823&rft.pages=31814-31823&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c04397&rft_dat=%3Cproquest_cross%3E2688085660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688085660&rft_id=info:pmid/&rfr_iscdi=true