Epitaxial growth of polycrystalline films formed by microwave plasma chemical vapor deposition at low temperatures
We report epitaxial growth of polycrystalline silicon films using microwave-induced PECVD from initial laser crystallized silicon formed on glass substrates. Undoped silicon was first crystallized by a method of pulsed laser-induced rapid melt-regrowth. Crystalline volume ratio of 100 nm thick micro...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2001-02, Vol.66 (1), p.431-435 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 435 |
---|---|
container_issue | 1 |
container_start_page | 431 |
container_title | Solar energy materials and solar cells |
container_volume | 66 |
creator | Andoh, Nobuyuki Kamisako, Koichi Sameshima, Toshiyuki Saitoh, Tadashi |
description | We report epitaxial growth of polycrystalline silicon films using microwave-induced PECVD from initial laser crystallized silicon formed on glass substrates. Undoped silicon was first crystallized by a method of pulsed laser-induced rapid melt-regrowth. Crystalline volume ratio of 100
nm thick microcrystalline silicon layer subsequently deposited on the bottom laser crystallized layer increased from 0.2 to 0.37 as the ratio of the bottom layer increased from 0.69 to 0.8. Epitaxial growth ratio was determined as 0.45 for the present CVD method. The electrical conductivity of doped microcrystalline silicon top layer also increased because of increase crystalline volume ratio. |
doi_str_mv | 10.1016/S0927-0248(00)00204-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26880225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092702480000204X</els_id><sourcerecordid>26880225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-77bc3c6ca2a08bb8d5bd9b71c9d78c49bb5867085c38e6ddfa83ddd0b20f231b3</originalsourceid><addsrcrecordid>eNqFkM1rFTEUxYMo-Kz-CUJAEF2M3knmI7MSKfUDCi5U6C7cJHdsJDMZk7xX339v2le6dXXh8jvncA5jL1t410I7vP8OkxgbEJ16A_AWQEDXXD1iu1aNUyPlpB6z3QPylD3L-TdUapDdjqWLzRf86zHwXynelGseZ77FcLTpmAuG4Ffisw9L5nNMCzlujnzxtrJ4IL4FzAtye031Vz0OuMXEHW0x--LjyrHwEG94oWWjhGWfKD9nT2YMmV7c3zP289PFj_MvzeW3z1_PP142VrZdacbRWGkHiwJBGaNcb9xkxtZOblS2m4zp1TCC6q1UNDg3o5LOOTACZiFbI8_Y65PvluKfPeWiF58thYArxX3WYlAKhOgr2J_A2irnRLPekl8wHXUL-nZhfbewvp1PA-i7hfVV1b26D8Bcy88JV-vzg1gNSoiuUh9OFNWuB09JZ-tpteR8Ilu0i_4_Of8ACAiTbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26880225</pqid></control><display><type>article</type><title>Epitaxial growth of polycrystalline films formed by microwave plasma chemical vapor deposition at low temperatures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Andoh, Nobuyuki ; Kamisako, Koichi ; Sameshima, Toshiyuki ; Saitoh, Tadashi</creator><creatorcontrib>Andoh, Nobuyuki ; Kamisako, Koichi ; Sameshima, Toshiyuki ; Saitoh, Tadashi</creatorcontrib><description>We report epitaxial growth of polycrystalline silicon films using microwave-induced PECVD from initial laser crystallized silicon formed on glass substrates. Undoped silicon was first crystallized by a method of pulsed laser-induced rapid melt-regrowth. Crystalline volume ratio of 100
nm thick microcrystalline silicon layer subsequently deposited on the bottom laser crystallized layer increased from 0.2 to 0.37 as the ratio of the bottom layer increased from 0.69 to 0.8. Epitaxial growth ratio was determined as 0.45 for the present CVD method. The electrical conductivity of doped microcrystalline silicon top layer also increased because of increase crystalline volume ratio.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/S0927-0248(00)00204-X</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Epitaxial growth ; Exact sciences and technology ; Laser annealing ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microcrystalline silicon ; PECVD ; Physics</subject><ispartof>Solar energy materials and solar cells, 2001-02, Vol.66 (1), p.431-435</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-77bc3c6ca2a08bb8d5bd9b71c9d78c49bb5867085c38e6ddfa83ddd0b20f231b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092702480000204X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=868224$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Andoh, Nobuyuki</creatorcontrib><creatorcontrib>Kamisako, Koichi</creatorcontrib><creatorcontrib>Sameshima, Toshiyuki</creatorcontrib><creatorcontrib>Saitoh, Tadashi</creatorcontrib><title>Epitaxial growth of polycrystalline films formed by microwave plasma chemical vapor deposition at low temperatures</title><title>Solar energy materials and solar cells</title><description>We report epitaxial growth of polycrystalline silicon films using microwave-induced PECVD from initial laser crystallized silicon formed on glass substrates. Undoped silicon was first crystallized by a method of pulsed laser-induced rapid melt-regrowth. Crystalline volume ratio of 100
nm thick microcrystalline silicon layer subsequently deposited on the bottom laser crystallized layer increased from 0.2 to 0.37 as the ratio of the bottom layer increased from 0.69 to 0.8. Epitaxial growth ratio was determined as 0.45 for the present CVD method. The electrical conductivity of doped microcrystalline silicon top layer also increased because of increase crystalline volume ratio.</description><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Epitaxial growth</subject><subject>Exact sciences and technology</subject><subject>Laser annealing</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microcrystalline silicon</subject><subject>PECVD</subject><subject>Physics</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkM1rFTEUxYMo-Kz-CUJAEF2M3knmI7MSKfUDCi5U6C7cJHdsJDMZk7xX339v2le6dXXh8jvncA5jL1t410I7vP8OkxgbEJ16A_AWQEDXXD1iu1aNUyPlpB6z3QPylD3L-TdUapDdjqWLzRf86zHwXynelGseZ77FcLTpmAuG4Ffisw9L5nNMCzlujnzxtrJ4IL4FzAtye031Vz0OuMXEHW0x--LjyrHwEG94oWWjhGWfKD9nT2YMmV7c3zP289PFj_MvzeW3z1_PP142VrZdacbRWGkHiwJBGaNcb9xkxtZOblS2m4zp1TCC6q1UNDg3o5LOOTACZiFbI8_Y65PvluKfPeWiF58thYArxX3WYlAKhOgr2J_A2irnRLPekl8wHXUL-nZhfbewvp1PA-i7hfVV1b26D8Bcy88JV-vzg1gNSoiuUh9OFNWuB09JZ-tpteR8Ilu0i_4_Of8ACAiTbA</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Andoh, Nobuyuki</creator><creator>Kamisako, Koichi</creator><creator>Sameshima, Toshiyuki</creator><creator>Saitoh, Tadashi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20010201</creationdate><title>Epitaxial growth of polycrystalline films formed by microwave plasma chemical vapor deposition at low temperatures</title><author>Andoh, Nobuyuki ; Kamisako, Koichi ; Sameshima, Toshiyuki ; Saitoh, Tadashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-77bc3c6ca2a08bb8d5bd9b71c9d78c49bb5867085c38e6ddfa83ddd0b20f231b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Epitaxial growth</topic><topic>Exact sciences and technology</topic><topic>Laser annealing</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microcrystalline silicon</topic><topic>PECVD</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andoh, Nobuyuki</creatorcontrib><creatorcontrib>Kamisako, Koichi</creatorcontrib><creatorcontrib>Sameshima, Toshiyuki</creatorcontrib><creatorcontrib>Saitoh, Tadashi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andoh, Nobuyuki</au><au>Kamisako, Koichi</au><au>Sameshima, Toshiyuki</au><au>Saitoh, Tadashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial growth of polycrystalline films formed by microwave plasma chemical vapor deposition at low temperatures</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2001-02-01</date><risdate>2001</risdate><volume>66</volume><issue>1</issue><spage>431</spage><epage>435</epage><pages>431-435</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>We report epitaxial growth of polycrystalline silicon films using microwave-induced PECVD from initial laser crystallized silicon formed on glass substrates. Undoped silicon was first crystallized by a method of pulsed laser-induced rapid melt-regrowth. Crystalline volume ratio of 100
nm thick microcrystalline silicon layer subsequently deposited on the bottom laser crystallized layer increased from 0.2 to 0.37 as the ratio of the bottom layer increased from 0.69 to 0.8. Epitaxial growth ratio was determined as 0.45 for the present CVD method. The electrical conductivity of doped microcrystalline silicon top layer also increased because of increase crystalline volume ratio.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0927-0248(00)00204-X</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2001-02, Vol.66 (1), p.431-435 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_miscellaneous_26880225 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Cross-disciplinary physics: materials science rheology Epitaxial growth Exact sciences and technology Laser annealing Materials science Methods of deposition of films and coatings film growth and epitaxy Microcrystalline silicon PECVD Physics |
title | Epitaxial growth of polycrystalline films formed by microwave plasma chemical vapor deposition at low temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20growth%20of%20polycrystalline%20films%20formed%20by%20microwave%20plasma%20chemical%20vapor%20deposition%20at%20low%20temperatures&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Andoh,%20Nobuyuki&rft.date=2001-02-01&rft.volume=66&rft.issue=1&rft.spage=431&rft.epage=435&rft.pages=431-435&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/S0927-0248(00)00204-X&rft_dat=%3Cproquest_cross%3E26880225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26880225&rft_id=info:pmid/&rft_els_id=S092702480000204X&rfr_iscdi=true |