Artificial intelligence and hyperspectral imaging for image-guided assistance in minimally invasive surgery

BACKGROUNDIntraoperative imaging assists surgeons during minimally invasive procedures. Hyperspectral imaging (HSI) is a noninvasive and noncontact optical technique with great diagnostic potential in medicine. The combination with artificial intelligence (AI) approaches to analyze HSI data is calle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chirurgie (Heidelberg, Germany) Germany), 2022-10, Vol.93 (10), p.940-947
Hauptverfasser: Chalopin, Claire, Nickel, Felix, Pfahl, Annekatrin, Köhler, Hannes, Maktabi, Marianne, Thieme, René, Sucher, Robert, Jansen-Winkeln, Boris, Studier-Fischer, Alexander, Seidlitz, Silvia, Maier-Hein, Lena, Neumuth, Thomas, Melzer, Andreas, Müller-Stich, Beat Peter, Gockel, Ines
Format: Artikel
Sprache:ger
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 947
container_issue 10
container_start_page 940
container_title Chirurgie (Heidelberg, Germany)
container_volume 93
creator Chalopin, Claire
Nickel, Felix
Pfahl, Annekatrin
Köhler, Hannes
Maktabi, Marianne
Thieme, René
Sucher, Robert
Jansen-Winkeln, Boris
Studier-Fischer, Alexander
Seidlitz, Silvia
Maier-Hein, Lena
Neumuth, Thomas
Melzer, Andreas
Müller-Stich, Beat Peter
Gockel, Ines
description BACKGROUNDIntraoperative imaging assists surgeons during minimally invasive procedures. Hyperspectral imaging (HSI) is a noninvasive and noncontact optical technique with great diagnostic potential in medicine. The combination with artificial intelligence (AI) approaches to analyze HSI data is called intelligent HSI in this article. OBJECTIVEWhat are the medical applications and advantages of intelligent HSI for minimally invasive visceral surgery? MATERIAL AND METHODSWithin various clinical studies HSI data from multiple in vivo tissue types and oncological resections were acquired using an HSI camera system. Different AI algorithms were evaluated for detection and discrimination of organs, risk structures and tumors. RESULTSIn an experimental animal study 20 different organs could be differentiated with high precision (> 95%) using AI. In vivo, the parathyroid glands could be discriminated from surrounding tissue with an F1 score of 47% and sensitivity of 75%, and the bile duct with an F1 score of 79% and sensitivity of 90%. Furthermore, ex vivo tumor tissue could be successfully detected with an area under the receiver operating characteristic (ROC) curve (AUC) larger than 0.91. DISCUSSIONThis study demonstrates that intelligent HSI can automatically and accurately detect different tissue types. Despite great progress in the last decade intelligent HSI still has limitations. Thus, accurate AI algorithms that are easier to understand for the user and an extensive standardized and continuously growing database are needed. Further clinical studies should support the various medical applications and lead to the adoption of intelligent HSI in the clinical routine practice.
doi_str_mv 10.1007/s00104-022-01677-w
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2687726231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687726231</sourcerecordid><originalsourceid>FETCH-LOGICAL-p118t-355d38ebe28a34cdd968c14f7e28f9187646a63421e66a241dd5051b5dc2b8683</originalsourceid><addsrcrecordid>eNotT8tKAzEUDYJgqf0BV1m6ieY1SbosxRcU3Ci4K2lyZ4xO0zF3ptK_d0ZdnXPP48Ih5ErwG8G5vUXOBdeMS8m4MNay7zMyk1YJZpbu7YIsED8452pKWT0jn6vSpzqF5Fuacg9tmxrIAajPkb6fOijYQejLZO99k3JD60P55cCaIUWI1CMm7P3USpnuUx7dtj2Nx9FjOgLFoTRQTpfkvPYtwuIf5-T1_u5l_cg2zw9P69WGdUK4nqmqisrBDqTzSocYl8YFoWs7CvVSOGu08UZpKcAYL7WIseKV2FUxyJ0zTs3J9d_frhy-BsB-u08Yxmk-w2HArTTOWmmkEuoHL6FdeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687726231</pqid></control><display><type>article</type><title>Artificial intelligence and hyperspectral imaging for image-guided assistance in minimally invasive surgery</title><source>Springer Nature - Complete Springer Journals</source><creator>Chalopin, Claire ; Nickel, Felix ; Pfahl, Annekatrin ; Köhler, Hannes ; Maktabi, Marianne ; Thieme, René ; Sucher, Robert ; Jansen-Winkeln, Boris ; Studier-Fischer, Alexander ; Seidlitz, Silvia ; Maier-Hein, Lena ; Neumuth, Thomas ; Melzer, Andreas ; Müller-Stich, Beat Peter ; Gockel, Ines</creator><creatorcontrib>Chalopin, Claire ; Nickel, Felix ; Pfahl, Annekatrin ; Köhler, Hannes ; Maktabi, Marianne ; Thieme, René ; Sucher, Robert ; Jansen-Winkeln, Boris ; Studier-Fischer, Alexander ; Seidlitz, Silvia ; Maier-Hein, Lena ; Neumuth, Thomas ; Melzer, Andreas ; Müller-Stich, Beat Peter ; Gockel, Ines</creatorcontrib><description>BACKGROUNDIntraoperative imaging assists surgeons during minimally invasive procedures. Hyperspectral imaging (HSI) is a noninvasive and noncontact optical technique with great diagnostic potential in medicine. The combination with artificial intelligence (AI) approaches to analyze HSI data is called intelligent HSI in this article. OBJECTIVEWhat are the medical applications and advantages of intelligent HSI for minimally invasive visceral surgery? MATERIAL AND METHODSWithin various clinical studies HSI data from multiple in vivo tissue types and oncological resections were acquired using an HSI camera system. Different AI algorithms were evaluated for detection and discrimination of organs, risk structures and tumors. RESULTSIn an experimental animal study 20 different organs could be differentiated with high precision (&gt; 95%) using AI. In vivo, the parathyroid glands could be discriminated from surrounding tissue with an F1 score of 47% and sensitivity of 75%, and the bile duct with an F1 score of 79% and sensitivity of 90%. Furthermore, ex vivo tumor tissue could be successfully detected with an area under the receiver operating characteristic (ROC) curve (AUC) larger than 0.91. DISCUSSIONThis study demonstrates that intelligent HSI can automatically and accurately detect different tissue types. Despite great progress in the last decade intelligent HSI still has limitations. Thus, accurate AI algorithms that are easier to understand for the user and an extensive standardized and continuously growing database are needed. Further clinical studies should support the various medical applications and lead to the adoption of intelligent HSI in the clinical routine practice.</description><identifier>EISSN: 2731-698X</identifier><identifier>DOI: 10.1007/s00104-022-01677-w</identifier><language>ger</language><ispartof>Chirurgie (Heidelberg, Germany), 2022-10, Vol.93 (10), p.940-947</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chalopin, Claire</creatorcontrib><creatorcontrib>Nickel, Felix</creatorcontrib><creatorcontrib>Pfahl, Annekatrin</creatorcontrib><creatorcontrib>Köhler, Hannes</creatorcontrib><creatorcontrib>Maktabi, Marianne</creatorcontrib><creatorcontrib>Thieme, René</creatorcontrib><creatorcontrib>Sucher, Robert</creatorcontrib><creatorcontrib>Jansen-Winkeln, Boris</creatorcontrib><creatorcontrib>Studier-Fischer, Alexander</creatorcontrib><creatorcontrib>Seidlitz, Silvia</creatorcontrib><creatorcontrib>Maier-Hein, Lena</creatorcontrib><creatorcontrib>Neumuth, Thomas</creatorcontrib><creatorcontrib>Melzer, Andreas</creatorcontrib><creatorcontrib>Müller-Stich, Beat Peter</creatorcontrib><creatorcontrib>Gockel, Ines</creatorcontrib><title>Artificial intelligence and hyperspectral imaging for image-guided assistance in minimally invasive surgery</title><title>Chirurgie (Heidelberg, Germany)</title><description>BACKGROUNDIntraoperative imaging assists surgeons during minimally invasive procedures. Hyperspectral imaging (HSI) is a noninvasive and noncontact optical technique with great diagnostic potential in medicine. The combination with artificial intelligence (AI) approaches to analyze HSI data is called intelligent HSI in this article. OBJECTIVEWhat are the medical applications and advantages of intelligent HSI for minimally invasive visceral surgery? MATERIAL AND METHODSWithin various clinical studies HSI data from multiple in vivo tissue types and oncological resections were acquired using an HSI camera system. Different AI algorithms were evaluated for detection and discrimination of organs, risk structures and tumors. RESULTSIn an experimental animal study 20 different organs could be differentiated with high precision (&gt; 95%) using AI. In vivo, the parathyroid glands could be discriminated from surrounding tissue with an F1 score of 47% and sensitivity of 75%, and the bile duct with an F1 score of 79% and sensitivity of 90%. Furthermore, ex vivo tumor tissue could be successfully detected with an area under the receiver operating characteristic (ROC) curve (AUC) larger than 0.91. DISCUSSIONThis study demonstrates that intelligent HSI can automatically and accurately detect different tissue types. Despite great progress in the last decade intelligent HSI still has limitations. Thus, accurate AI algorithms that are easier to understand for the user and an extensive standardized and continuously growing database are needed. Further clinical studies should support the various medical applications and lead to the adoption of intelligent HSI in the clinical routine practice.</description><issn>2731-698X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotT8tKAzEUDYJgqf0BV1m6ieY1SbosxRcU3Ci4K2lyZ4xO0zF3ptK_d0ZdnXPP48Ih5ErwG8G5vUXOBdeMS8m4MNay7zMyk1YJZpbu7YIsED8452pKWT0jn6vSpzqF5Fuacg9tmxrIAajPkb6fOijYQejLZO99k3JD60P55cCaIUWI1CMm7P3USpnuUx7dtj2Nx9FjOgLFoTRQTpfkvPYtwuIf5-T1_u5l_cg2zw9P69WGdUK4nqmqisrBDqTzSocYl8YFoWs7CvVSOGu08UZpKcAYL7WIseKV2FUxyJ0zTs3J9d_frhy-BsB-u08Yxmk-w2HArTTOWmmkEuoHL6FdeA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Chalopin, Claire</creator><creator>Nickel, Felix</creator><creator>Pfahl, Annekatrin</creator><creator>Köhler, Hannes</creator><creator>Maktabi, Marianne</creator><creator>Thieme, René</creator><creator>Sucher, Robert</creator><creator>Jansen-Winkeln, Boris</creator><creator>Studier-Fischer, Alexander</creator><creator>Seidlitz, Silvia</creator><creator>Maier-Hein, Lena</creator><creator>Neumuth, Thomas</creator><creator>Melzer, Andreas</creator><creator>Müller-Stich, Beat Peter</creator><creator>Gockel, Ines</creator><scope>7X8</scope></search><sort><creationdate>20221001</creationdate><title>Artificial intelligence and hyperspectral imaging for image-guided assistance in minimally invasive surgery</title><author>Chalopin, Claire ; Nickel, Felix ; Pfahl, Annekatrin ; Köhler, Hannes ; Maktabi, Marianne ; Thieme, René ; Sucher, Robert ; Jansen-Winkeln, Boris ; Studier-Fischer, Alexander ; Seidlitz, Silvia ; Maier-Hein, Lena ; Neumuth, Thomas ; Melzer, Andreas ; Müller-Stich, Beat Peter ; Gockel, Ines</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p118t-355d38ebe28a34cdd968c14f7e28f9187646a63421e66a241dd5051b5dc2b8683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>ger</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chalopin, Claire</creatorcontrib><creatorcontrib>Nickel, Felix</creatorcontrib><creatorcontrib>Pfahl, Annekatrin</creatorcontrib><creatorcontrib>Köhler, Hannes</creatorcontrib><creatorcontrib>Maktabi, Marianne</creatorcontrib><creatorcontrib>Thieme, René</creatorcontrib><creatorcontrib>Sucher, Robert</creatorcontrib><creatorcontrib>Jansen-Winkeln, Boris</creatorcontrib><creatorcontrib>Studier-Fischer, Alexander</creatorcontrib><creatorcontrib>Seidlitz, Silvia</creatorcontrib><creatorcontrib>Maier-Hein, Lena</creatorcontrib><creatorcontrib>Neumuth, Thomas</creatorcontrib><creatorcontrib>Melzer, Andreas</creatorcontrib><creatorcontrib>Müller-Stich, Beat Peter</creatorcontrib><creatorcontrib>Gockel, Ines</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Chirurgie (Heidelberg, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chalopin, Claire</au><au>Nickel, Felix</au><au>Pfahl, Annekatrin</au><au>Köhler, Hannes</au><au>Maktabi, Marianne</au><au>Thieme, René</au><au>Sucher, Robert</au><au>Jansen-Winkeln, Boris</au><au>Studier-Fischer, Alexander</au><au>Seidlitz, Silvia</au><au>Maier-Hein, Lena</au><au>Neumuth, Thomas</au><au>Melzer, Andreas</au><au>Müller-Stich, Beat Peter</au><au>Gockel, Ines</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence and hyperspectral imaging for image-guided assistance in minimally invasive surgery</atitle><jtitle>Chirurgie (Heidelberg, Germany)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>93</volume><issue>10</issue><spage>940</spage><epage>947</epage><pages>940-947</pages><eissn>2731-698X</eissn><abstract>BACKGROUNDIntraoperative imaging assists surgeons during minimally invasive procedures. Hyperspectral imaging (HSI) is a noninvasive and noncontact optical technique with great diagnostic potential in medicine. The combination with artificial intelligence (AI) approaches to analyze HSI data is called intelligent HSI in this article. OBJECTIVEWhat are the medical applications and advantages of intelligent HSI for minimally invasive visceral surgery? MATERIAL AND METHODSWithin various clinical studies HSI data from multiple in vivo tissue types and oncological resections were acquired using an HSI camera system. Different AI algorithms were evaluated for detection and discrimination of organs, risk structures and tumors. RESULTSIn an experimental animal study 20 different organs could be differentiated with high precision (&gt; 95%) using AI. In vivo, the parathyroid glands could be discriminated from surrounding tissue with an F1 score of 47% and sensitivity of 75%, and the bile duct with an F1 score of 79% and sensitivity of 90%. Furthermore, ex vivo tumor tissue could be successfully detected with an area under the receiver operating characteristic (ROC) curve (AUC) larger than 0.91. DISCUSSIONThis study demonstrates that intelligent HSI can automatically and accurately detect different tissue types. Despite great progress in the last decade intelligent HSI still has limitations. Thus, accurate AI algorithms that are easier to understand for the user and an extensive standardized and continuously growing database are needed. Further clinical studies should support the various medical applications and lead to the adoption of intelligent HSI in the clinical routine practice.</abstract><doi>10.1007/s00104-022-01677-w</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2731-698X
ispartof Chirurgie (Heidelberg, Germany), 2022-10, Vol.93 (10), p.940-947
issn 2731-698X
language ger
recordid cdi_proquest_miscellaneous_2687726231
source Springer Nature - Complete Springer Journals
title Artificial intelligence and hyperspectral imaging for image-guided assistance in minimally invasive surgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20and%20hyperspectral%20imaging%20for%20image-guided%20assistance%20in%20minimally%20invasive%20surgery&rft.jtitle=Chirurgie%20(Heidelberg,%20Germany)&rft.au=Chalopin,%20Claire&rft.date=2022-10-01&rft.volume=93&rft.issue=10&rft.spage=940&rft.epage=947&rft.pages=940-947&rft.eissn=2731-698X&rft_id=info:doi/10.1007/s00104-022-01677-w&rft_dat=%3Cproquest%3E2687726231%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687726231&rft_id=info:pmid/&rfr_iscdi=true