Rethinking Algorithm Performance Metrics for Artificial Intelligence in Diagnostic Medicine
This JAMA Viewpoint in the Diagnostic Excellence series describes factors and characteristics that are necessary for designing artificial intelligence tools in clinical practice.
Gespeichert in:
Veröffentlicht in: | JAMA : the journal of the American Medical Association 2022-07, Vol.328 (4), p.329-330 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 4 |
container_start_page | 329 |
container_title | JAMA : the journal of the American Medical Association |
container_volume | 328 |
creator | Reyna, Matthew A Nsoesie, Elaine O Clifford, Gari D |
description | This JAMA Viewpoint in the Diagnostic Excellence series describes factors and characteristics that are necessary for designing artificial intelligence tools in clinical practice. |
doi_str_mv | 10.1001/jama.2022.10561 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2687715966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687715966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9ce1697672a5a430b6009f1528066d9e3302c15c0fc900dcb40adf4d6d8e62023</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqUws6FILCxp_RE79liVT6kIhGBiiFzHSV0Sp9jOwL_HoYWBW6yznju99wBwjuAUQYhmG9nKKYYYx5YydADGiBKeEir4IRhDKHiaZzwbgRPvNzAWIvkxGBHKISYcj8H7iw5rYz-MrZN5U3fOhHWbPGtXda6VVunkUQdnlE_iRzJ3wVRGGdkkDzbopjG1Hhhjk2sja9v5YFScKCNj9Sk4qmTj9dn-nYC325vXxX26fLp7WMyXqSKYhlQojZjIWY4llRmBKxZzV4hiDhkrhSYEYoWogpUSEJZqlUFZVlnJSq5ZvJ1MwNVu79Z1n732oWiNVzGdtLrrfYEZz3NEBWMRvfyHbrre2ZguUiJShNA8UrMdpVznvdNVsXWmle6rQLAYvBeD92LwXvx4jxMX-739qtXlH_8rmnwD7hd9mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697713357</pqid></control><display><type>article</type><title>Rethinking Algorithm Performance Metrics for Artificial Intelligence in Diagnostic Medicine</title><source>MEDLINE</source><source>American Medical Association Current</source><creator>Reyna, Matthew A ; Nsoesie, Elaine O ; Clifford, Gari D</creator><creatorcontrib>Reyna, Matthew A ; Nsoesie, Elaine O ; Clifford, Gari D</creatorcontrib><description>This JAMA Viewpoint in the Diagnostic Excellence series describes factors and characteristics that are necessary for designing artificial intelligence tools in clinical practice.</description><identifier>ISSN: 0098-7484</identifier><identifier>EISSN: 1538-3598</identifier><identifier>DOI: 10.1001/jama.2022.10561</identifier><identifier>PMID: 35802382</identifier><language>eng</language><publisher>United States: American Medical Association</publisher><subject>Algorithms ; Artificial intelligence ; Artificial Intelligence - standards ; Benchmarking - standards ; Diagnosis ; Medical diagnosis ; Medicine - standards ; Performance measurement</subject><ispartof>JAMA : the journal of the American Medical Association, 2022-07, Vol.328 (4), p.329-330</ispartof><rights>Copyright American Medical Association Jul 26, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9ce1697672a5a430b6009f1528066d9e3302c15c0fc900dcb40adf4d6d8e62023</citedby><cites>FETCH-LOGICAL-c325t-9ce1697672a5a430b6009f1528066d9e3302c15c0fc900dcb40adf4d6d8e62023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35802382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reyna, Matthew A</creatorcontrib><creatorcontrib>Nsoesie, Elaine O</creatorcontrib><creatorcontrib>Clifford, Gari D</creatorcontrib><title>Rethinking Algorithm Performance Metrics for Artificial Intelligence in Diagnostic Medicine</title><title>JAMA : the journal of the American Medical Association</title><addtitle>JAMA</addtitle><description>This JAMA Viewpoint in the Diagnostic Excellence series describes factors and characteristics that are necessary for designing artificial intelligence tools in clinical practice.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial Intelligence - standards</subject><subject>Benchmarking - standards</subject><subject>Diagnosis</subject><subject>Medical diagnosis</subject><subject>Medicine - standards</subject><subject>Performance measurement</subject><issn>0098-7484</issn><issn>1538-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkD1PwzAQhi0EoqUws6FILCxp_RE79liVT6kIhGBiiFzHSV0Sp9jOwL_HoYWBW6yznju99wBwjuAUQYhmG9nKKYYYx5YydADGiBKeEir4IRhDKHiaZzwbgRPvNzAWIvkxGBHKISYcj8H7iw5rYz-MrZN5U3fOhHWbPGtXda6VVunkUQdnlE_iRzJ3wVRGGdkkDzbopjG1Hhhjk2sja9v5YFScKCNj9Sk4qmTj9dn-nYC325vXxX26fLp7WMyXqSKYhlQojZjIWY4llRmBKxZzV4hiDhkrhSYEYoWogpUSEJZqlUFZVlnJSq5ZvJ1MwNVu79Z1n732oWiNVzGdtLrrfYEZz3NEBWMRvfyHbrre2ZguUiJShNA8UrMdpVznvdNVsXWmle6rQLAYvBeD92LwXvx4jxMX-739qtXlH_8rmnwD7hd9mQ</recordid><startdate>20220726</startdate><enddate>20220726</enddate><creator>Reyna, Matthew A</creator><creator>Nsoesie, Elaine O</creator><creator>Clifford, Gari D</creator><general>American Medical Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20220726</creationdate><title>Rethinking Algorithm Performance Metrics for Artificial Intelligence in Diagnostic Medicine</title><author>Reyna, Matthew A ; Nsoesie, Elaine O ; Clifford, Gari D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9ce1697672a5a430b6009f1528066d9e3302c15c0fc900dcb40adf4d6d8e62023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial Intelligence - standards</topic><topic>Benchmarking - standards</topic><topic>Diagnosis</topic><topic>Medical diagnosis</topic><topic>Medicine - standards</topic><topic>Performance measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyna, Matthew A</creatorcontrib><creatorcontrib>Nsoesie, Elaine O</creatorcontrib><creatorcontrib>Clifford, Gari D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>JAMA : the journal of the American Medical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyna, Matthew A</au><au>Nsoesie, Elaine O</au><au>Clifford, Gari D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rethinking Algorithm Performance Metrics for Artificial Intelligence in Diagnostic Medicine</atitle><jtitle>JAMA : the journal of the American Medical Association</jtitle><addtitle>JAMA</addtitle><date>2022-07-26</date><risdate>2022</risdate><volume>328</volume><issue>4</issue><spage>329</spage><epage>330</epage><pages>329-330</pages><issn>0098-7484</issn><eissn>1538-3598</eissn><abstract>This JAMA Viewpoint in the Diagnostic Excellence series describes factors and characteristics that are necessary for designing artificial intelligence tools in clinical practice.</abstract><cop>United States</cop><pub>American Medical Association</pub><pmid>35802382</pmid><doi>10.1001/jama.2022.10561</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-7484 |
ispartof | JAMA : the journal of the American Medical Association, 2022-07, Vol.328 (4), p.329-330 |
issn | 0098-7484 1538-3598 |
language | eng |
recordid | cdi_proquest_miscellaneous_2687715966 |
source | MEDLINE; American Medical Association Current |
subjects | Algorithms Artificial intelligence Artificial Intelligence - standards Benchmarking - standards Diagnosis Medical diagnosis Medicine - standards Performance measurement |
title | Rethinking Algorithm Performance Metrics for Artificial Intelligence in Diagnostic Medicine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rethinking%20Algorithm%20Performance%20Metrics%20for%20Artificial%20Intelligence%20in%20Diagnostic%20Medicine&rft.jtitle=JAMA%20:%20the%20journal%20of%20the%20American%20Medical%20Association&rft.au=Reyna,%20Matthew%20A&rft.date=2022-07-26&rft.volume=328&rft.issue=4&rft.spage=329&rft.epage=330&rft.pages=329-330&rft.issn=0098-7484&rft.eissn=1538-3598&rft_id=info:doi/10.1001/jama.2022.10561&rft_dat=%3Cproquest_cross%3E2687715966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697713357&rft_id=info:pmid/35802382&rfr_iscdi=true |