Combination of Edge Element and Optical Flow Estimates for 3D-Model-Based Vehicle Tracking in Traffic Image Sequences
A model-based vehicle tracking system for the evaluation of inner-city traffic video sequences has been systematically tested on about 15 minutes of real world video data. Methodological improvements during preparatory test phases affected--among other changes--the combination of edge element and op...
Gespeichert in:
Veröffentlicht in: | International journal of computer vision 1999-12, Vol.35 (3), p.295-319 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 319 |
---|---|
container_issue | 3 |
container_start_page | 295 |
container_title | International journal of computer vision |
container_volume | 35 |
creator | Haag, Michael Nagel, Hans-hellmut |
description | A model-based vehicle tracking system for the evaluation of inner-city traffic video sequences has been systematically tested on about 15 minutes of real world video data. Methodological improvements during preparatory test phases affected--among other changes--the combination of edge element and optical flow estimates in the measurement process and a more consequent exploitation of background knowledge. The explication of this knowledge in the form of models facilitates the evaluation of video data for different scenes by exchanging the scene-dependent models. An extensive series of experiments with a large test sample demonstrates that the current version of our system appears to have reached a relative optimum: further interactive tuning of tracking parameters does no longer promise to improve the overall system performance significantly. Even the incorporation of further knowledge regarding vehicle and scene geometry or illumination has to cope with an increasing level of interaction between different knowledge sources and system parameters. Our results indicate that model-based tracking of rigid objects in monocular image sequences may have to be reappraised more thoroughly than anticipated during the recent past.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1008112528134 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_26874439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26874439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-92778461bd766c51c8736170512854aafae7dde0d79305a1282a226dd58f99c53</originalsourceid><addsrcrecordid>eNpdjj1PwzAYhC0EEqUws1pCYgv4I_4IWykpVCrqQGGtXPtNcXHsEqfi7xMEE9OdTo_uDqFLSm4oYfx2ckcJ0ZQywTTl5REaUaF4QUsijtGIVIwUQlb0FJ3lvCOEMM34CB2mqd34aHqfIk4Nrt0WcB2ghdhjEx1e7ntvTcCzkL5wnXvfmh4yblKH-UPxnByE4t5kcPgN3r0NgFedsR8-brGPP75pvMXz1gy9L_B5gGghn6OTxoQMF386Rq-zejV9KhbLx_l0sigsF7wvKqaULiXdOCWlFdRqxSVVRFCmRWlMY0A5B8SpihNhhpQZxqRzQjdVZQUfo-vf3n2Xhuncr1ufLYRgIqRDXjOpVVnyagCv_oG7dOji8G1NKeWyJExx_g0N7GkR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113640273</pqid></control><display><type>article</type><title>Combination of Edge Element and Optical Flow Estimates for 3D-Model-Based Vehicle Tracking in Traffic Image Sequences</title><source>SpringerLink Journals - AutoHoldings</source><creator>Haag, Michael ; Nagel, Hans-hellmut</creator><creatorcontrib>Haag, Michael ; Nagel, Hans-hellmut</creatorcontrib><description>A model-based vehicle tracking system for the evaluation of inner-city traffic video sequences has been systematically tested on about 15 minutes of real world video data. Methodological improvements during preparatory test phases affected--among other changes--the combination of edge element and optical flow estimates in the measurement process and a more consequent exploitation of background knowledge. The explication of this knowledge in the form of models facilitates the evaluation of video data for different scenes by exchanging the scene-dependent models. An extensive series of experiments with a large test sample demonstrates that the current version of our system appears to have reached a relative optimum: further interactive tuning of tracking parameters does no longer promise to improve the overall system performance significantly. Even the incorporation of further knowledge regarding vehicle and scene geometry or illumination has to cope with an increasing level of interaction between different knowledge sources and system parameters. Our results indicate that model-based tracking of rigid objects in monocular image sequences may have to be reappraised more thoroughly than anticipated during the recent past.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1023/A:1008112528134</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Estimates ; Studies</subject><ispartof>International journal of computer vision, 1999-12, Vol.35 (3), p.295-319</ispartof><rights>Kluwer Academic Publishers 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-92778461bd766c51c8736170512854aafae7dde0d79305a1282a226dd58f99c53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Haag, Michael</creatorcontrib><creatorcontrib>Nagel, Hans-hellmut</creatorcontrib><title>Combination of Edge Element and Optical Flow Estimates for 3D-Model-Based Vehicle Tracking in Traffic Image Sequences</title><title>International journal of computer vision</title><description>A model-based vehicle tracking system for the evaluation of inner-city traffic video sequences has been systematically tested on about 15 minutes of real world video data. Methodological improvements during preparatory test phases affected--among other changes--the combination of edge element and optical flow estimates in the measurement process and a more consequent exploitation of background knowledge. The explication of this knowledge in the form of models facilitates the evaluation of video data for different scenes by exchanging the scene-dependent models. An extensive series of experiments with a large test sample demonstrates that the current version of our system appears to have reached a relative optimum: further interactive tuning of tracking parameters does no longer promise to improve the overall system performance significantly. Even the incorporation of further knowledge regarding vehicle and scene geometry or illumination has to cope with an increasing level of interaction between different knowledge sources and system parameters. Our results indicate that model-based tracking of rigid objects in monocular image sequences may have to be reappraised more thoroughly than anticipated during the recent past.[PUBLICATION ABSTRACT]</description><subject>Estimates</subject><subject>Studies</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjj1PwzAYhC0EEqUws1pCYgv4I_4IWykpVCrqQGGtXPtNcXHsEqfi7xMEE9OdTo_uDqFLSm4oYfx2ckcJ0ZQywTTl5REaUaF4QUsijtGIVIwUQlb0FJ3lvCOEMM34CB2mqd34aHqfIk4Nrt0WcB2ghdhjEx1e7ntvTcCzkL5wnXvfmh4yblKH-UPxnByE4t5kcPgN3r0NgFedsR8-brGPP75pvMXz1gy9L_B5gGghn6OTxoQMF386Rq-zejV9KhbLx_l0sigsF7wvKqaULiXdOCWlFdRqxSVVRFCmRWlMY0A5B8SpihNhhpQZxqRzQjdVZQUfo-vf3n2Xhuncr1ufLYRgIqRDXjOpVVnyagCv_oG7dOji8G1NKeWyJExx_g0N7GkR</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Haag, Michael</creator><creator>Nagel, Hans-hellmut</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>19991201</creationdate><title>Combination of Edge Element and Optical Flow Estimates for 3D-Model-Based Vehicle Tracking in Traffic Image Sequences</title><author>Haag, Michael ; Nagel, Hans-hellmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-92778461bd766c51c8736170512854aafae7dde0d79305a1282a226dd58f99c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Estimates</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haag, Michael</creatorcontrib><creatorcontrib>Nagel, Hans-hellmut</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haag, Michael</au><au>Nagel, Hans-hellmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of Edge Element and Optical Flow Estimates for 3D-Model-Based Vehicle Tracking in Traffic Image Sequences</atitle><jtitle>International journal of computer vision</jtitle><date>1999-12-01</date><risdate>1999</risdate><volume>35</volume><issue>3</issue><spage>295</spage><epage>319</epage><pages>295-319</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>A model-based vehicle tracking system for the evaluation of inner-city traffic video sequences has been systematically tested on about 15 minutes of real world video data. Methodological improvements during preparatory test phases affected--among other changes--the combination of edge element and optical flow estimates in the measurement process and a more consequent exploitation of background knowledge. The explication of this knowledge in the form of models facilitates the evaluation of video data for different scenes by exchanging the scene-dependent models. An extensive series of experiments with a large test sample demonstrates that the current version of our system appears to have reached a relative optimum: further interactive tuning of tracking parameters does no longer promise to improve the overall system performance significantly. Even the incorporation of further knowledge regarding vehicle and scene geometry or illumination has to cope with an increasing level of interaction between different knowledge sources and system parameters. Our results indicate that model-based tracking of rigid objects in monocular image sequences may have to be reappraised more thoroughly than anticipated during the recent past.[PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1008112528134</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 1999-12, Vol.35 (3), p.295-319 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_proquest_miscellaneous_26874439 |
source | SpringerLink Journals - AutoHoldings |
subjects | Estimates Studies |
title | Combination of Edge Element and Optical Flow Estimates for 3D-Model-Based Vehicle Tracking in Traffic Image Sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20Edge%20Element%20and%20Optical%20Flow%20Estimates%20for%203D-Model-Based%20Vehicle%20Tracking%20in%20Traffic%20Image%20Sequences&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Haag,%20Michael&rft.date=1999-12-01&rft.volume=35&rft.issue=3&rft.spage=295&rft.epage=319&rft.pages=295-319&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1023/A:1008112528134&rft_dat=%3Cproquest%3E26874439%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113640273&rft_id=info:pmid/&rfr_iscdi=true |