Biomolecular computing and programming
Molecular computing is a discipline that aims at harnessing individual molecules at nanoscales for computational purposes. The best-studied molecules for this purpose to date have been DNA and bacteriorhodopsin. Biomolecular computing allows one to realistically entertain, for the first time in hist...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 1999-09, Vol.3 (3), p.236-250 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | 3 |
container_start_page | 236 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 3 |
creator | Garzon, M.H. Deaton, R.J. |
description | Molecular computing is a discipline that aims at harnessing individual molecules at nanoscales for computational purposes. The best-studied molecules for this purpose to date have been DNA and bacteriorhodopsin. Biomolecular computing allows one to realistically entertain, for the first time in history, the possibility of exploiting the massive parallelism at nanoscales inherent in natural phenomena to solve computational problems. The implementation of evolutionary algorithms in biomolecules would bring full circle the biological analogy and present an attractive alternative to meet large demands for computational power. The paper presents a review of the most important advances in biomolecular computing in the last few years. Major achievements to date are outlined, both experimental and theoretical, and major potential advances and challenges for practitioners in the foreseeable future are identified. A list of sources and major events in the field has been compiled in the Appendix, although no exhaustive survey of the expanding literature is intended. |
doi_str_mv | 10.1109/4235.788493 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_26866969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>788493</ieee_id><sourcerecordid>28183215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-d233b405f638639a28cb36f4feb5ff4cdde9282870b29d295b6ee5e76b4092943</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUQpTGxMncqAUvwd3wgVX1IlFpDYLMc5V0FJU-xm4N_jKhUjTD7rnruTXkIuGV0wRuFWcqEWpTESxBGZMJCsoJTr41xTA0VZmo9TcpbSJ6VMKgYTMr9v-q5v0Q-tizPfd9th12zWM7epZ9vYr6Pruvw_JyfBtQkvDu-UvD8-vC2fi9Xr08vyblV4IeWuqLkQlaQqaGG0AMeNr4QOMmClQpC-rhG44aakFYeag6o0osJS5yHgIMWUXI978-2vAdPOdk3y2LZug_2QLDAAIU3Jspz_KblhRnCm_ofaaA0aMrwZoY99ShGD3camc_HbMmr38dp9vHaMN-urUTeI-CsPzR85PXOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26866969</pqid></control><display><type>article</type><title>Biomolecular computing and programming</title><source>IEEE Electronic Library (IEL)</source><creator>Garzon, M.H. ; Deaton, R.J.</creator><creatorcontrib>Garzon, M.H. ; Deaton, R.J.</creatorcontrib><description>Molecular computing is a discipline that aims at harnessing individual molecules at nanoscales for computational purposes. The best-studied molecules for this purpose to date have been DNA and bacteriorhodopsin. Biomolecular computing allows one to realistically entertain, for the first time in history, the possibility of exploiting the massive parallelism at nanoscales inherent in natural phenomena to solve computational problems. The implementation of evolutionary algorithms in biomolecules would bring full circle the biological analogy and present an attractive alternative to meet large demands for computational power. The paper presents a review of the most important advances in biomolecular computing in the last few years. Major achievements to date are outlined, both experimental and theoretical, and major potential advances and challenges for practitioners in the foreseeable future are identified. A list of sources and major events in the field has been compiled in the Appendix, although no exhaustive survey of the expanding literature is intended.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/4235.788493</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analogies ; Biology computing ; Computation ; Concurrent computing ; Deoxyribonucleic acid ; DNA computing ; Evolutionary algorithms ; Evolutionary computation ; Hardware ; Humans ; Molecular biophysics ; Molecular computing ; Nanobioscience ; Nanocomposites ; Nanomaterials ; Nanostructure ; Parallel processing ; Programming</subject><ispartof>IEEE transactions on evolutionary computation, 1999-09, Vol.3 (3), p.236-250</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-d233b405f638639a28cb36f4feb5ff4cdde9282870b29d295b6ee5e76b4092943</citedby><cites>FETCH-LOGICAL-c344t-d233b405f638639a28cb36f4feb5ff4cdde9282870b29d295b6ee5e76b4092943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/788493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/788493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garzon, M.H.</creatorcontrib><creatorcontrib>Deaton, R.J.</creatorcontrib><title>Biomolecular computing and programming</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Molecular computing is a discipline that aims at harnessing individual molecules at nanoscales for computational purposes. The best-studied molecules for this purpose to date have been DNA and bacteriorhodopsin. Biomolecular computing allows one to realistically entertain, for the first time in history, the possibility of exploiting the massive parallelism at nanoscales inherent in natural phenomena to solve computational problems. The implementation of evolutionary algorithms in biomolecules would bring full circle the biological analogy and present an attractive alternative to meet large demands for computational power. The paper presents a review of the most important advances in biomolecular computing in the last few years. Major achievements to date are outlined, both experimental and theoretical, and major potential advances and challenges for practitioners in the foreseeable future are identified. A list of sources and major events in the field has been compiled in the Appendix, although no exhaustive survey of the expanding literature is intended.</description><subject>Analogies</subject><subject>Biology computing</subject><subject>Computation</subject><subject>Concurrent computing</subject><subject>Deoxyribonucleic acid</subject><subject>DNA computing</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Hardware</subject><subject>Humans</subject><subject>Molecular biophysics</subject><subject>Molecular computing</subject><subject>Nanobioscience</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Parallel processing</subject><subject>Programming</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0D1PwzAQBmALgUQpTGxMncqAUvwd3wgVX1IlFpDYLMc5V0FJU-xm4N_jKhUjTD7rnruTXkIuGV0wRuFWcqEWpTESxBGZMJCsoJTr41xTA0VZmo9TcpbSJ6VMKgYTMr9v-q5v0Q-tizPfd9th12zWM7epZ9vYr6Pruvw_JyfBtQkvDu-UvD8-vC2fi9Xr08vyblV4IeWuqLkQlaQqaGG0AMeNr4QOMmClQpC-rhG44aakFYeag6o0osJS5yHgIMWUXI978-2vAdPOdk3y2LZug_2QLDAAIU3Jspz_KblhRnCm_ofaaA0aMrwZoY99ShGD3camc_HbMmr38dp9vHaMN-urUTeI-CsPzR85PXOQ</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>Garzon, M.H.</creator><creator>Deaton, R.J.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990901</creationdate><title>Biomolecular computing and programming</title><author>Garzon, M.H. ; Deaton, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-d233b405f638639a28cb36f4feb5ff4cdde9282870b29d295b6ee5e76b4092943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Analogies</topic><topic>Biology computing</topic><topic>Computation</topic><topic>Concurrent computing</topic><topic>Deoxyribonucleic acid</topic><topic>DNA computing</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Hardware</topic><topic>Humans</topic><topic>Molecular biophysics</topic><topic>Molecular computing</topic><topic>Nanobioscience</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Parallel processing</topic><topic>Programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garzon, M.H.</creatorcontrib><creatorcontrib>Deaton, R.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garzon, M.H.</au><au>Deaton, R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomolecular computing and programming</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>1999-09-01</date><risdate>1999</risdate><volume>3</volume><issue>3</issue><spage>236</spage><epage>250</epage><pages>236-250</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Molecular computing is a discipline that aims at harnessing individual molecules at nanoscales for computational purposes. The best-studied molecules for this purpose to date have been DNA and bacteriorhodopsin. Biomolecular computing allows one to realistically entertain, for the first time in history, the possibility of exploiting the massive parallelism at nanoscales inherent in natural phenomena to solve computational problems. The implementation of evolutionary algorithms in biomolecules would bring full circle the biological analogy and present an attractive alternative to meet large demands for computational power. The paper presents a review of the most important advances in biomolecular computing in the last few years. Major achievements to date are outlined, both experimental and theoretical, and major potential advances and challenges for practitioners in the foreseeable future are identified. A list of sources and major events in the field has been compiled in the Appendix, although no exhaustive survey of the expanding literature is intended.</abstract><pub>IEEE</pub><doi>10.1109/4235.788493</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 1999-09, Vol.3 (3), p.236-250 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_miscellaneous_26866969 |
source | IEEE Electronic Library (IEL) |
subjects | Analogies Biology computing Computation Concurrent computing Deoxyribonucleic acid DNA computing Evolutionary algorithms Evolutionary computation Hardware Humans Molecular biophysics Molecular computing Nanobioscience Nanocomposites Nanomaterials Nanostructure Parallel processing Programming |
title | Biomolecular computing and programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomolecular%20computing%20and%20programming&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Garzon,%20M.H.&rft.date=1999-09-01&rft.volume=3&rft.issue=3&rft.spage=236&rft.epage=250&rft.pages=236-250&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/4235.788493&rft_dat=%3Cproquest_RIE%3E28183215%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26866969&rft_id=info:pmid/&rft_ieee_id=788493&rfr_iscdi=true |