Biomolecular computing and programming

Molecular computing is a discipline that aims at harnessing individual molecules at nanoscales for computational purposes. The best-studied molecules for this purpose to date have been DNA and bacteriorhodopsin. Biomolecular computing allows one to realistically entertain, for the first time in hist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 1999-09, Vol.3 (3), p.236-250
Hauptverfasser: Garzon, M.H., Deaton, R.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 3
container_start_page 236
container_title IEEE transactions on evolutionary computation
container_volume 3
creator Garzon, M.H.
Deaton, R.J.
description Molecular computing is a discipline that aims at harnessing individual molecules at nanoscales for computational purposes. The best-studied molecules for this purpose to date have been DNA and bacteriorhodopsin. Biomolecular computing allows one to realistically entertain, for the first time in history, the possibility of exploiting the massive parallelism at nanoscales inherent in natural phenomena to solve computational problems. The implementation of evolutionary algorithms in biomolecules would bring full circle the biological analogy and present an attractive alternative to meet large demands for computational power. The paper presents a review of the most important advances in biomolecular computing in the last few years. Major achievements to date are outlined, both experimental and theoretical, and major potential advances and challenges for practitioners in the foreseeable future are identified. A list of sources and major events in the field has been compiled in the Appendix, although no exhaustive survey of the expanding literature is intended.
doi_str_mv 10.1109/4235.788493
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_26866969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>788493</ieee_id><sourcerecordid>28183215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-d233b405f638639a28cb36f4feb5ff4cdde9282870b29d295b6ee5e76b4092943</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUQpTGxMncqAUvwd3wgVX1IlFpDYLMc5V0FJU-xm4N_jKhUjTD7rnruTXkIuGV0wRuFWcqEWpTESxBGZMJCsoJTr41xTA0VZmo9TcpbSJ6VMKgYTMr9v-q5v0Q-tizPfd9th12zWM7epZ9vYr6Pruvw_JyfBtQkvDu-UvD8-vC2fi9Xr08vyblV4IeWuqLkQlaQqaGG0AMeNr4QOMmClQpC-rhG44aakFYeag6o0osJS5yHgIMWUXI978-2vAdPOdk3y2LZug_2QLDAAIU3Jspz_KblhRnCm_ofaaA0aMrwZoY99ShGD3camc_HbMmr38dp9vHaMN-urUTeI-CsPzR85PXOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26866969</pqid></control><display><type>article</type><title>Biomolecular computing and programming</title><source>IEEE Electronic Library (IEL)</source><creator>Garzon, M.H. ; Deaton, R.J.</creator><creatorcontrib>Garzon, M.H. ; Deaton, R.J.</creatorcontrib><description>Molecular computing is a discipline that aims at harnessing individual molecules at nanoscales for computational purposes. The best-studied molecules for this purpose to date have been DNA and bacteriorhodopsin. Biomolecular computing allows one to realistically entertain, for the first time in history, the possibility of exploiting the massive parallelism at nanoscales inherent in natural phenomena to solve computational problems. The implementation of evolutionary algorithms in biomolecules would bring full circle the biological analogy and present an attractive alternative to meet large demands for computational power. The paper presents a review of the most important advances in biomolecular computing in the last few years. Major achievements to date are outlined, both experimental and theoretical, and major potential advances and challenges for practitioners in the foreseeable future are identified. A list of sources and major events in the field has been compiled in the Appendix, although no exhaustive survey of the expanding literature is intended.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/4235.788493</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analogies ; Biology computing ; Computation ; Concurrent computing ; Deoxyribonucleic acid ; DNA computing ; Evolutionary algorithms ; Evolutionary computation ; Hardware ; Humans ; Molecular biophysics ; Molecular computing ; Nanobioscience ; Nanocomposites ; Nanomaterials ; Nanostructure ; Parallel processing ; Programming</subject><ispartof>IEEE transactions on evolutionary computation, 1999-09, Vol.3 (3), p.236-250</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-d233b405f638639a28cb36f4feb5ff4cdde9282870b29d295b6ee5e76b4092943</citedby><cites>FETCH-LOGICAL-c344t-d233b405f638639a28cb36f4feb5ff4cdde9282870b29d295b6ee5e76b4092943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/788493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/788493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garzon, M.H.</creatorcontrib><creatorcontrib>Deaton, R.J.</creatorcontrib><title>Biomolecular computing and programming</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Molecular computing is a discipline that aims at harnessing individual molecules at nanoscales for computational purposes. The best-studied molecules for this purpose to date have been DNA and bacteriorhodopsin. Biomolecular computing allows one to realistically entertain, for the first time in history, the possibility of exploiting the massive parallelism at nanoscales inherent in natural phenomena to solve computational problems. The implementation of evolutionary algorithms in biomolecules would bring full circle the biological analogy and present an attractive alternative to meet large demands for computational power. The paper presents a review of the most important advances in biomolecular computing in the last few years. Major achievements to date are outlined, both experimental and theoretical, and major potential advances and challenges for practitioners in the foreseeable future are identified. A list of sources and major events in the field has been compiled in the Appendix, although no exhaustive survey of the expanding literature is intended.</description><subject>Analogies</subject><subject>Biology computing</subject><subject>Computation</subject><subject>Concurrent computing</subject><subject>Deoxyribonucleic acid</subject><subject>DNA computing</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Hardware</subject><subject>Humans</subject><subject>Molecular biophysics</subject><subject>Molecular computing</subject><subject>Nanobioscience</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Parallel processing</subject><subject>Programming</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0D1PwzAQBmALgUQpTGxMncqAUvwd3wgVX1IlFpDYLMc5V0FJU-xm4N_jKhUjTD7rnruTXkIuGV0wRuFWcqEWpTESxBGZMJCsoJTr41xTA0VZmo9TcpbSJ6VMKgYTMr9v-q5v0Q-tizPfd9th12zWM7epZ9vYr6Pruvw_JyfBtQkvDu-UvD8-vC2fi9Xr08vyblV4IeWuqLkQlaQqaGG0AMeNr4QOMmClQpC-rhG44aakFYeag6o0osJS5yHgIMWUXI978-2vAdPOdk3y2LZug_2QLDAAIU3Jspz_KblhRnCm_ofaaA0aMrwZoY99ShGD3camc_HbMmr38dp9vHaMN-urUTeI-CsPzR85PXOQ</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>Garzon, M.H.</creator><creator>Deaton, R.J.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990901</creationdate><title>Biomolecular computing and programming</title><author>Garzon, M.H. ; Deaton, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-d233b405f638639a28cb36f4feb5ff4cdde9282870b29d295b6ee5e76b4092943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Analogies</topic><topic>Biology computing</topic><topic>Computation</topic><topic>Concurrent computing</topic><topic>Deoxyribonucleic acid</topic><topic>DNA computing</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Hardware</topic><topic>Humans</topic><topic>Molecular biophysics</topic><topic>Molecular computing</topic><topic>Nanobioscience</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Parallel processing</topic><topic>Programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garzon, M.H.</creatorcontrib><creatorcontrib>Deaton, R.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garzon, M.H.</au><au>Deaton, R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomolecular computing and programming</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>1999-09-01</date><risdate>1999</risdate><volume>3</volume><issue>3</issue><spage>236</spage><epage>250</epage><pages>236-250</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Molecular computing is a discipline that aims at harnessing individual molecules at nanoscales for computational purposes. The best-studied molecules for this purpose to date have been DNA and bacteriorhodopsin. Biomolecular computing allows one to realistically entertain, for the first time in history, the possibility of exploiting the massive parallelism at nanoscales inherent in natural phenomena to solve computational problems. The implementation of evolutionary algorithms in biomolecules would bring full circle the biological analogy and present an attractive alternative to meet large demands for computational power. The paper presents a review of the most important advances in biomolecular computing in the last few years. Major achievements to date are outlined, both experimental and theoretical, and major potential advances and challenges for practitioners in the foreseeable future are identified. A list of sources and major events in the field has been compiled in the Appendix, although no exhaustive survey of the expanding literature is intended.</abstract><pub>IEEE</pub><doi>10.1109/4235.788493</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 1999-09, Vol.3 (3), p.236-250
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_miscellaneous_26866969
source IEEE Electronic Library (IEL)
subjects Analogies
Biology computing
Computation
Concurrent computing
Deoxyribonucleic acid
DNA computing
Evolutionary algorithms
Evolutionary computation
Hardware
Humans
Molecular biophysics
Molecular computing
Nanobioscience
Nanocomposites
Nanomaterials
Nanostructure
Parallel processing
Programming
title Biomolecular computing and programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomolecular%20computing%20and%20programming&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Garzon,%20M.H.&rft.date=1999-09-01&rft.volume=3&rft.issue=3&rft.spage=236&rft.epage=250&rft.pages=236-250&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/4235.788493&rft_dat=%3Cproquest_RIE%3E28183215%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26866969&rft_id=info:pmid/&rft_ieee_id=788493&rfr_iscdi=true