Alkali Metals Ion Exchange on Muscovite Mica

The lithium surface ions of a muscovite, which was partially delaminated with a hot saturated lithium nitrate solution, exchange readily with sodium, potassium, rubidium, and cesium ions. The remaining potassium ions in the interlayers of the muscovite do not exchange at ambient conditions. The surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 1999-01, Vol.209 (1), p.232-239
Hauptverfasser: Osman, Maged A., Moor, Christoph, Caseri, Walter R., Suter, Ulrich W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 1
container_start_page 232
container_title Journal of colloid and interface science
container_volume 209
creator Osman, Maged A.
Moor, Christoph
Caseri, Walter R.
Suter, Ulrich W.
description The lithium surface ions of a muscovite, which was partially delaminated with a hot saturated lithium nitrate solution, exchange readily with sodium, potassium, rubidium, and cesium ions. The remaining potassium ions in the interlayers of the muscovite do not exchange at ambient conditions. The surface ion exchange is quite fast but can be followed by measuring the change in conductivity of the reaction mixture. In dilute systems, an initial drop in conductivity due to the exchange of the alkali metal ions with Li+was observed, which was followed by a slow increase over a long period of time. That increase in conductivity is attributed to the formation of alkali bicarbonates due to the CO2omnipresent in water. The surface Li+was exchanged almost quantitatively by K+, Rb+, or Cs+until a saturation value was nearly reached, while the Li+/Na+exchange was less quantitative. The equilibrium constants (K) of these reactions as well as the ion exchange capacity were calculated by nonlinear least-squares fits. For the Na+/Li+exchangeKwas found to be 4, while those of the K+, Rb+, and Cs+exchange were too high for an accurate determination. The affinity of the alkali metal ions to muscovite decreased in the order K+, Rb+, Cs+> Na+> Li+.
doi_str_mv 10.1006/jcis.1998.5878
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26860880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979798958787</els_id><sourcerecordid>26860880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-84ccc93829c5f0079be3bc73e264415d7e7c6662681064fe6811f871b685abe63</originalsourceid><addsrcrecordid>eNp9kD1Pw0AMhk8IBKWwsiFlQIiBlHOS-xorxJfUigXm08V14CBNIJci-PdcaMUGky358WvrYewI-AQ4lxcv6MMEjNEToZXeYiPgRqQKeL7NRpxnkBpl1B7bD-GFcwAhzC7bNZEFoUfsfFq_utonc-pdHZK7tkmuPvHZNU-UxH6-Cth--J6SuUd3wHaqSNHhpo7Z4_XVw-VtOru_ubuczlIsOPSpLhDR5DozKCrOlSkpL1HllMmiALFQpFBKmUkNXBYVxQqVVlBKLVxJMh-z03XuW9e-ryj0dukDUl27htpVsHFTcq15BM_-BUELAz-XIjpZo9i1IXRU2bfOL133ZYHbwaQdTNrBpB1MxoXjTfaqXNLiF9-oi_OTzdwFdHXVuWYI-E1VmRLF8KJeYxSFfXjqbEBPDdLCd4S9XbT-rw--AVKsi_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859166268</pqid></control><display><type>article</type><title>Alkali Metals Ion Exchange on Muscovite Mica</title><source>Elsevier ScienceDirect Journals</source><creator>Osman, Maged A. ; Moor, Christoph ; Caseri, Walter R. ; Suter, Ulrich W.</creator><creatorcontrib>Osman, Maged A. ; Moor, Christoph ; Caseri, Walter R. ; Suter, Ulrich W.</creatorcontrib><description>The lithium surface ions of a muscovite, which was partially delaminated with a hot saturated lithium nitrate solution, exchange readily with sodium, potassium, rubidium, and cesium ions. The remaining potassium ions in the interlayers of the muscovite do not exchange at ambient conditions. The surface ion exchange is quite fast but can be followed by measuring the change in conductivity of the reaction mixture. In dilute systems, an initial drop in conductivity due to the exchange of the alkali metal ions with Li+was observed, which was followed by a slow increase over a long period of time. That increase in conductivity is attributed to the formation of alkali bicarbonates due to the CO2omnipresent in water. The surface Li+was exchanged almost quantitatively by K+, Rb+, or Cs+until a saturation value was nearly reached, while the Li+/Na+exchange was less quantitative. The equilibrium constants (K) of these reactions as well as the ion exchange capacity were calculated by nonlinear least-squares fits. For the Na+/Li+exchangeKwas found to be 4, while those of the K+, Rb+, and Cs+exchange were too high for an accurate determination. The affinity of the alkali metal ions to muscovite decreased in the order K+, Rb+, Cs+&gt; Na+&gt; Li+.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1006/jcis.1998.5878</identifier><identifier>PMID: 9878158</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>alkali metals ; Chemistry ; conductivity ; equilibrium constant ; Exact sciences and technology ; General and physical chemistry ; ion exchange capacity ; Ion-exchange ; mica ; muscovite ; Other ion exchangers: preparations and properties ; reaction rate ; Surface physical chemistry</subject><ispartof>Journal of colloid and interface science, 1999-01, Vol.209 (1), p.232-239</ispartof><rights>1999 Academic Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-84ccc93829c5f0079be3bc73e264415d7e7c6662681064fe6811f871b685abe63</citedby><cites>FETCH-LOGICAL-c401t-84ccc93829c5f0079be3bc73e264415d7e7c6662681064fe6811f871b685abe63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979798958787$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1727540$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9878158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osman, Maged A.</creatorcontrib><creatorcontrib>Moor, Christoph</creatorcontrib><creatorcontrib>Caseri, Walter R.</creatorcontrib><creatorcontrib>Suter, Ulrich W.</creatorcontrib><title>Alkali Metals Ion Exchange on Muscovite Mica</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>The lithium surface ions of a muscovite, which was partially delaminated with a hot saturated lithium nitrate solution, exchange readily with sodium, potassium, rubidium, and cesium ions. The remaining potassium ions in the interlayers of the muscovite do not exchange at ambient conditions. The surface ion exchange is quite fast but can be followed by measuring the change in conductivity of the reaction mixture. In dilute systems, an initial drop in conductivity due to the exchange of the alkali metal ions with Li+was observed, which was followed by a slow increase over a long period of time. That increase in conductivity is attributed to the formation of alkali bicarbonates due to the CO2omnipresent in water. The surface Li+was exchanged almost quantitatively by K+, Rb+, or Cs+until a saturation value was nearly reached, while the Li+/Na+exchange was less quantitative. The equilibrium constants (K) of these reactions as well as the ion exchange capacity were calculated by nonlinear least-squares fits. For the Na+/Li+exchangeKwas found to be 4, while those of the K+, Rb+, and Cs+exchange were too high for an accurate determination. The affinity of the alkali metal ions to muscovite decreased in the order K+, Rb+, Cs+&gt; Na+&gt; Li+.</description><subject>alkali metals</subject><subject>Chemistry</subject><subject>conductivity</subject><subject>equilibrium constant</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>ion exchange capacity</subject><subject>Ion-exchange</subject><subject>mica</subject><subject>muscovite</subject><subject>Other ion exchangers: preparations and properties</subject><subject>reaction rate</subject><subject>Surface physical chemistry</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kD1Pw0AMhk8IBKWwsiFlQIiBlHOS-xorxJfUigXm08V14CBNIJci-PdcaMUGky358WvrYewI-AQ4lxcv6MMEjNEToZXeYiPgRqQKeL7NRpxnkBpl1B7bD-GFcwAhzC7bNZEFoUfsfFq_utonc-pdHZK7tkmuPvHZNU-UxH6-Cth--J6SuUd3wHaqSNHhpo7Z4_XVw-VtOru_ubuczlIsOPSpLhDR5DozKCrOlSkpL1HllMmiALFQpFBKmUkNXBYVxQqVVlBKLVxJMh-z03XuW9e-ryj0dukDUl27htpVsHFTcq15BM_-BUELAz-XIjpZo9i1IXRU2bfOL133ZYHbwaQdTNrBpB1MxoXjTfaqXNLiF9-oi_OTzdwFdHXVuWYI-E1VmRLF8KJeYxSFfXjqbEBPDdLCd4S9XbT-rw--AVKsi_8</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Osman, Maged A.</creator><creator>Moor, Christoph</creator><creator>Caseri, Walter R.</creator><creator>Suter, Ulrich W.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19990101</creationdate><title>Alkali Metals Ion Exchange on Muscovite Mica</title><author>Osman, Maged A. ; Moor, Christoph ; Caseri, Walter R. ; Suter, Ulrich W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-84ccc93829c5f0079be3bc73e264415d7e7c6662681064fe6811f871b685abe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>alkali metals</topic><topic>Chemistry</topic><topic>conductivity</topic><topic>equilibrium constant</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>ion exchange capacity</topic><topic>Ion-exchange</topic><topic>mica</topic><topic>muscovite</topic><topic>Other ion exchangers: preparations and properties</topic><topic>reaction rate</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osman, Maged A.</creatorcontrib><creatorcontrib>Moor, Christoph</creatorcontrib><creatorcontrib>Caseri, Walter R.</creatorcontrib><creatorcontrib>Suter, Ulrich W.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osman, Maged A.</au><au>Moor, Christoph</au><au>Caseri, Walter R.</au><au>Suter, Ulrich W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alkali Metals Ion Exchange on Muscovite Mica</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>1999-01-01</date><risdate>1999</risdate><volume>209</volume><issue>1</issue><spage>232</spage><epage>239</epage><pages>232-239</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>The lithium surface ions of a muscovite, which was partially delaminated with a hot saturated lithium nitrate solution, exchange readily with sodium, potassium, rubidium, and cesium ions. The remaining potassium ions in the interlayers of the muscovite do not exchange at ambient conditions. The surface ion exchange is quite fast but can be followed by measuring the change in conductivity of the reaction mixture. In dilute systems, an initial drop in conductivity due to the exchange of the alkali metal ions with Li+was observed, which was followed by a slow increase over a long period of time. That increase in conductivity is attributed to the formation of alkali bicarbonates due to the CO2omnipresent in water. The surface Li+was exchanged almost quantitatively by K+, Rb+, or Cs+until a saturation value was nearly reached, while the Li+/Na+exchange was less quantitative. The equilibrium constants (K) of these reactions as well as the ion exchange capacity were calculated by nonlinear least-squares fits. For the Na+/Li+exchangeKwas found to be 4, while those of the K+, Rb+, and Cs+exchange were too high for an accurate determination. The affinity of the alkali metal ions to muscovite decreased in the order K+, Rb+, Cs+&gt; Na+&gt; Li+.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>9878158</pmid><doi>10.1006/jcis.1998.5878</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 1999-01, Vol.209 (1), p.232-239
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_26860880
source Elsevier ScienceDirect Journals
subjects alkali metals
Chemistry
conductivity
equilibrium constant
Exact sciences and technology
General and physical chemistry
ion exchange capacity
Ion-exchange
mica
muscovite
Other ion exchangers: preparations and properties
reaction rate
Surface physical chemistry
title Alkali Metals Ion Exchange on Muscovite Mica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alkali%20Metals%20Ion%20Exchange%20on%20Muscovite%20Mica&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Osman,%20Maged%20A.&rft.date=1999-01-01&rft.volume=209&rft.issue=1&rft.spage=232&rft.epage=239&rft.pages=232-239&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1006/jcis.1998.5878&rft_dat=%3Cproquest_cross%3E26860880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859166268&rft_id=info:pmid/9878158&rft_els_id=S0021979798958787&rfr_iscdi=true