Entrainment of fine particles from surfaces by gas jets impinging at oblique incidence

This paper describes an experimental study of the removal of fine (12-micron) polystyrene particles from a glass substrate, using a gas jet that impinges obliquely onto a particle-laden surface. In order to avoid transient affects associated with jet start-up, the sample was slowly translated under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2001-02, Vol.30 (2), p.135-142
Hauptverfasser: SMEDLEY, G. T, PHARES, D. J, FLAGAN, R. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue 2
container_start_page 135
container_title Experiments in fluids
container_volume 30
creator SMEDLEY, G. T
PHARES, D. J
FLAGAN, R. C
description This paper describes an experimental study of the removal of fine (12-micron) polystyrene particles from a glass substrate, using a gas jet that impinges obliquely onto a particle-laden surface. In order to avoid transient affects associated with jet start-up, the sample was slowly translated under a steady jet. The translating gas jet produces a long, clean path that provides very good statistics for exploring the effect of jet parameters. This study focuses on the dependence of the spatial distribution of removal on the jet pressure ratio and impingement angle. The jet is translated over the sample both longitudinally and transversely to determine both the width and the length of the particle removal footprint. The width of the removal footprint increases and the length decreases as the impingement angle is increased. Previous researchers have reported seemingly contradictory results regarding the dependence of removal efficiency on impingement angle; this paper seeks to resolve these differences. For the steady jet, the threshold jet pressure ratio required for 50 percent particle removal increases with decreasing impingement angle. In addition, studies of the entrainment of well-characterized particles from well-characterized substrates provide insight into the surface shear stress imposed by the oblique jet. (Author)
doi_str_mv 10.1007/s003480000148
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26856528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26856528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-5f965655b1977d5422f2837c952feb922ea195f213ac60e4faafe90b639002e33</originalsourceid><addsrcrecordid>eNpVkM1LxDAQxYMouFaP3gOCt2o-2-Yoy_oBC17Ua0mzkyVLm9ZM97D_vZFdBIeBYeC9HzOPkFvOHjhj9SMyJlXDcnHVnJEFV1KUnHN1ThasFrJUTaUuyRXiLku0Yc2CfK3inGyIA8SZjp76EIFONs3B9YDUp3GguE_eurx1B7q1SHcwIw3DFOI2N7XZ2PXhew80RBc2EB1ckwtve4Sb0yzI5_PqY_lart9f3pZP69JJyedSe1PpSuuOm7reaCWEF42sndHCQ2eEAMuN9oJL6yoGylvrwbCukoYxAVIW5P7IndKYD8C5HQI66HsbYdxjK6om8zOzIOVR6NKImMC3UwqDTYeWs_Y3vfZfell_dwJbdLb3yebX8M_U1FqaSv4Aw2huOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26856528</pqid></control><display><type>article</type><title>Entrainment of fine particles from surfaces by gas jets impinging at oblique incidence</title><source>SpringerLink Journals - AutoHoldings</source><creator>SMEDLEY, G. T ; PHARES, D. J ; FLAGAN, R. C</creator><creatorcontrib>SMEDLEY, G. T ; PHARES, D. J ; FLAGAN, R. C</creatorcontrib><description>This paper describes an experimental study of the removal of fine (12-micron) polystyrene particles from a glass substrate, using a gas jet that impinges obliquely onto a particle-laden surface. In order to avoid transient affects associated with jet start-up, the sample was slowly translated under a steady jet. The translating gas jet produces a long, clean path that provides very good statistics for exploring the effect of jet parameters. This study focuses on the dependence of the spatial distribution of removal on the jet pressure ratio and impingement angle. The jet is translated over the sample both longitudinally and transversely to determine both the width and the length of the particle removal footprint. The width of the removal footprint increases and the length decreases as the impingement angle is increased. Previous researchers have reported seemingly contradictory results regarding the dependence of removal efficiency on impingement angle; this paper seeks to resolve these differences. For the steady jet, the threshold jet pressure ratio required for 50 percent particle removal increases with decreasing impingement angle. In addition, studies of the entrainment of well-characterized particles from well-characterized substrates provide insight into the surface shear stress imposed by the oblique jet. (Author)</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s003480000148</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Materials science ; Physics ; Surface cleaning, etching, patterning ; Surface treatments</subject><ispartof>Experiments in fluids, 2001-02, Vol.30 (2), p.135-142</ispartof><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-5f965655b1977d5422f2837c952feb922ea195f213ac60e4faafe90b639002e33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=875396$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SMEDLEY, G. T</creatorcontrib><creatorcontrib>PHARES, D. J</creatorcontrib><creatorcontrib>FLAGAN, R. C</creatorcontrib><title>Entrainment of fine particles from surfaces by gas jets impinging at oblique incidence</title><title>Experiments in fluids</title><description>This paper describes an experimental study of the removal of fine (12-micron) polystyrene particles from a glass substrate, using a gas jet that impinges obliquely onto a particle-laden surface. In order to avoid transient affects associated with jet start-up, the sample was slowly translated under a steady jet. The translating gas jet produces a long, clean path that provides very good statistics for exploring the effect of jet parameters. This study focuses on the dependence of the spatial distribution of removal on the jet pressure ratio and impingement angle. The jet is translated over the sample both longitudinally and transversely to determine both the width and the length of the particle removal footprint. The width of the removal footprint increases and the length decreases as the impingement angle is increased. Previous researchers have reported seemingly contradictory results regarding the dependence of removal efficiency on impingement angle; this paper seeks to resolve these differences. For the steady jet, the threshold jet pressure ratio required for 50 percent particle removal increases with decreasing impingement angle. In addition, studies of the entrainment of well-characterized particles from well-characterized substrates provide insight into the surface shear stress imposed by the oblique jet. (Author)</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Materials science</subject><subject>Physics</subject><subject>Surface cleaning, etching, patterning</subject><subject>Surface treatments</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LxDAQxYMouFaP3gOCt2o-2-Yoy_oBC17Ua0mzkyVLm9ZM97D_vZFdBIeBYeC9HzOPkFvOHjhj9SMyJlXDcnHVnJEFV1KUnHN1ThasFrJUTaUuyRXiLku0Yc2CfK3inGyIA8SZjp76EIFONs3B9YDUp3GguE_eurx1B7q1SHcwIw3DFOI2N7XZ2PXhew80RBc2EB1ckwtve4Sb0yzI5_PqY_lart9f3pZP69JJyedSe1PpSuuOm7reaCWEF42sndHCQ2eEAMuN9oJL6yoGylvrwbCukoYxAVIW5P7IndKYD8C5HQI66HsbYdxjK6om8zOzIOVR6NKImMC3UwqDTYeWs_Y3vfZfell_dwJbdLb3yebX8M_U1FqaSv4Aw2huOw</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>SMEDLEY, G. T</creator><creator>PHARES, D. J</creator><creator>FLAGAN, R. C</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20010201</creationdate><title>Entrainment of fine particles from surfaces by gas jets impinging at oblique incidence</title><author>SMEDLEY, G. T ; PHARES, D. J ; FLAGAN, R. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-5f965655b1977d5422f2837c952feb922ea195f213ac60e4faafe90b639002e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Materials science</topic><topic>Physics</topic><topic>Surface cleaning, etching, patterning</topic><topic>Surface treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SMEDLEY, G. T</creatorcontrib><creatorcontrib>PHARES, D. J</creatorcontrib><creatorcontrib>FLAGAN, R. C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SMEDLEY, G. T</au><au>PHARES, D. J</au><au>FLAGAN, R. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entrainment of fine particles from surfaces by gas jets impinging at oblique incidence</atitle><jtitle>Experiments in fluids</jtitle><date>2001-02-01</date><risdate>2001</risdate><volume>30</volume><issue>2</issue><spage>135</spage><epage>142</epage><pages>135-142</pages><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>This paper describes an experimental study of the removal of fine (12-micron) polystyrene particles from a glass substrate, using a gas jet that impinges obliquely onto a particle-laden surface. In order to avoid transient affects associated with jet start-up, the sample was slowly translated under a steady jet. The translating gas jet produces a long, clean path that provides very good statistics for exploring the effect of jet parameters. This study focuses on the dependence of the spatial distribution of removal on the jet pressure ratio and impingement angle. The jet is translated over the sample both longitudinally and transversely to determine both the width and the length of the particle removal footprint. The width of the removal footprint increases and the length decreases as the impingement angle is increased. Previous researchers have reported seemingly contradictory results regarding the dependence of removal efficiency on impingement angle; this paper seeks to resolve these differences. For the steady jet, the threshold jet pressure ratio required for 50 percent particle removal increases with decreasing impingement angle. In addition, studies of the entrainment of well-characterized particles from well-characterized substrates provide insight into the surface shear stress imposed by the oblique jet. (Author)</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s003480000148</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2001-02, Vol.30 (2), p.135-142
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_miscellaneous_26856528
source SpringerLink Journals - AutoHoldings
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Instrumentation for fluid dynamics
Materials science
Physics
Surface cleaning, etching, patterning
Surface treatments
title Entrainment of fine particles from surfaces by gas jets impinging at oblique incidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entrainment%20of%20fine%20particles%20from%20surfaces%20by%20gas%20jets%20impinging%20at%20oblique%20incidence&rft.jtitle=Experiments%20in%20fluids&rft.au=SMEDLEY,%20G.%20T&rft.date=2001-02-01&rft.volume=30&rft.issue=2&rft.spage=135&rft.epage=142&rft.pages=135-142&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s003480000148&rft_dat=%3Cproquest_cross%3E26856528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26856528&rft_id=info:pmid/&rfr_iscdi=true