Fluffy-Like Cation-Exchanged Prussian Blue Analogues for Sodium-Ion Battery Cathodes
Prussian blue (PB) and its analogues are considered as promising cathode materials for sodium-ion batteries (SIBs) owing to their low cost and high capacity. However, it is still a huge challenge to avoid obvious capacity decay during cycling due to the structural collapse. Herein, we design a metho...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-07, Vol.14 (28), p.32149-32156 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prussian blue (PB) and its analogues are considered as promising cathode materials for sodium-ion batteries (SIBs) owing to their low cost and high capacity. However, it is still a huge challenge to avoid obvious capacity decay during cycling due to the structural collapse. Herein, we design a method to replace parts of Fe ion sites in PB with Ni ions to prepare fluffy-like nickel PB (PB-Ni) by cationic solution immersion, which improves cycling stability for sodium storage. The content of Ni in PB-Ni is explored by regulating the soaking time in the Ni-containing solution, which results in different effects on the electrochemical performance as cathodes of SIBs. Especially, PB-Ni-1d (soaking in NiCl2 solution for 1 day) exhibits an initial capacity of 114.2 mA h g–1 at 50 mA g–1 and a stable cycling performance of 800 cycles at 300 mA g–1. Furthermore, the reversible phase transformation and small volume variation for PB-Ni-1d are revealed by in situ X-ray diffraction characterization. The nickel hexacyanoferrate in outer layer maintains the cubic phase to stabilize the crystal structure. The cation-exchange strategy provides a facile idea to fabricate high-quality PB cathodes with superior stability for high-performance SIBs. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c08739 |