Wavelet-distributed approximating functional method for solving the Navier-Stokes equation

The Navier-Stokes equations with both periodic and non-slip boundary conditions are solved using a new class of wavelets based on distributed approximating functionals (DAFs). Extremely high accuracy is found in our wavelet-DAF integration of the analytically solvable Taylor problem, using 32 grid p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 1998-12, Vol.115 (1), p.18-24
Hauptverfasser: Wei, G.W., Zhang, D.S., Althorpe, S.C., Kouri, D.J., Hoffman, D.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 18
container_title Computer physics communications
container_volume 115
creator Wei, G.W.
Zhang, D.S.
Althorpe, S.C.
Kouri, D.J.
Hoffman, D.K.
description The Navier-Stokes equations with both periodic and non-slip boundary conditions are solved using a new class of wavelets based on distributed approximating functionals (DAFs). Extremely high accuracy is found in our wavelet-DAF integration of the analytically solvable Taylor problem, using 32 grid points in each of the two spatial dimensions, for Reynolds numbers from Re = 20 to Re = ∞. The present approach is then applied to the lid-driven cavity problem with standard non-slip boundary conditions. Physically reasonable solutions are obtained for Reynolds numbers as high as 3200, using 63 grid points in each spatial dimension. Our results indicate that wavelet methods are readily applicable to those dynamical problems for which the existence of possible singularities demands highly accurate solution methods.
doi_str_mv 10.1016/S0010-4655(98)00113-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26853935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465598001131</els_id><sourcerecordid>26853935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e1538d8f9db0c5380868c84ad615902434ecaaf0ba3dedb56c4c8f3f3b1f17203</originalsourceid><addsrcrecordid>eNqFkMtKAzEUQIMoWKufIMxCRBejyWQemZWI-IKiCxXBTcgkNzY6nbRJpujfm2mLLl3lhnvu6yB0SPAZwaQ8f8KY4DQvi-KkZqfxQ2hKttCIsKpOszrPt9HoF9lFe95_YIyrqqYj9PYqltBCSJXxwZmmD6ASMZ87-2VmIpjuPdF9J4OxnWiTGYSpVYm2LvG2XQ7ZMIXkQSwNuPQp2E_wCSx6MfD7aEeL1sPB5h2jl5vr56u7dPJ4e391OUklLauQAikoU0zXqsEyhpiVTLJcqJIUNc5ymoMUQuNGUAWqKUqZS6appg3RpMowHaPjdd-49KIHH_jMeAltKzqwvedZyQpa0yKCxRqUznrvQPO5i0e6b04wH0zylUk-aOI14yuTnMS6o80A4aVotROdNP6vOC6akyxiF2sM4rGDEO6lgU6CMg5k4Mqafwb9APcEiYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26853935</pqid></control><display><type>article</type><title>Wavelet-distributed approximating functional method for solving the Navier-Stokes equation</title><source>Elsevier ScienceDirect Journals</source><creator>Wei, G.W. ; Zhang, D.S. ; Althorpe, S.C. ; Kouri, D.J. ; Hoffman, D.K.</creator><creatorcontrib>Wei, G.W. ; Zhang, D.S. ; Althorpe, S.C. ; Kouri, D.J. ; Hoffman, D.K.</creatorcontrib><description>The Navier-Stokes equations with both periodic and non-slip boundary conditions are solved using a new class of wavelets based on distributed approximating functionals (DAFs). Extremely high accuracy is found in our wavelet-DAF integration of the analytically solvable Taylor problem, using 32 grid points in each of the two spatial dimensions, for Reynolds numbers from Re = 20 to Re = ∞. The present approach is then applied to the lid-driven cavity problem with standard non-slip boundary conditions. Physically reasonable solutions are obtained for Reynolds numbers as high as 3200, using 63 grid points in each spatial dimension. Our results indicate that wavelet methods are readily applicable to those dynamical problems for which the existence of possible singularities demands highly accurate solution methods.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/S0010-4655(98)00113-1</identifier><identifier>CODEN: CPHCBZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximations and expansions ; Computational techniques ; Exact sciences and technology ; Function theory, analysis ; Mathematical methods in physics ; Nonlinear waves and nonlinear wave propagation (including parametric effects, mode coupling, ponderomotive effects, etc.) ; Numerical approximation and analysis ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Waves, oscillations, and instabilities in plasmas and intense beams</subject><ispartof>Computer physics communications, 1998-12, Vol.115 (1), p.18-24</ispartof><rights>1998</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e1538d8f9db0c5380868c84ad615902434ecaaf0ba3dedb56c4c8f3f3b1f17203</citedby><cites>FETCH-LOGICAL-c367t-e1538d8f9db0c5380868c84ad615902434ecaaf0ba3dedb56c4c8f3f3b1f17203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465598001131$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1615412$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, G.W.</creatorcontrib><creatorcontrib>Zhang, D.S.</creatorcontrib><creatorcontrib>Althorpe, S.C.</creatorcontrib><creatorcontrib>Kouri, D.J.</creatorcontrib><creatorcontrib>Hoffman, D.K.</creatorcontrib><title>Wavelet-distributed approximating functional method for solving the Navier-Stokes equation</title><title>Computer physics communications</title><description>The Navier-Stokes equations with both periodic and non-slip boundary conditions are solved using a new class of wavelets based on distributed approximating functionals (DAFs). Extremely high accuracy is found in our wavelet-DAF integration of the analytically solvable Taylor problem, using 32 grid points in each of the two spatial dimensions, for Reynolds numbers from Re = 20 to Re = ∞. The present approach is then applied to the lid-driven cavity problem with standard non-slip boundary conditions. Physically reasonable solutions are obtained for Reynolds numbers as high as 3200, using 63 grid points in each spatial dimension. Our results indicate that wavelet methods are readily applicable to those dynamical problems for which the existence of possible singularities demands highly accurate solution methods.</description><subject>Approximations and expansions</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Nonlinear waves and nonlinear wave propagation (including parametric effects, mode coupling, ponderomotive effects, etc.)</subject><subject>Numerical approximation and analysis</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Waves, oscillations, and instabilities in plasmas and intense beams</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUQIMoWKufIMxCRBejyWQemZWI-IKiCxXBTcgkNzY6nbRJpujfm2mLLl3lhnvu6yB0SPAZwaQ8f8KY4DQvi-KkZqfxQ2hKttCIsKpOszrPt9HoF9lFe95_YIyrqqYj9PYqltBCSJXxwZmmD6ASMZ87-2VmIpjuPdF9J4OxnWiTGYSpVYm2LvG2XQ7ZMIXkQSwNuPQp2E_wCSx6MfD7aEeL1sPB5h2jl5vr56u7dPJ4e391OUklLauQAikoU0zXqsEyhpiVTLJcqJIUNc5ymoMUQuNGUAWqKUqZS6appg3RpMowHaPjdd-49KIHH_jMeAltKzqwvedZyQpa0yKCxRqUznrvQPO5i0e6b04wH0zylUk-aOI14yuTnMS6o80A4aVotROdNP6vOC6akyxiF2sM4rGDEO6lgU6CMg5k4Mqafwb9APcEiYA</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Wei, G.W.</creator><creator>Zhang, D.S.</creator><creator>Althorpe, S.C.</creator><creator>Kouri, D.J.</creator><creator>Hoffman, D.K.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19981201</creationdate><title>Wavelet-distributed approximating functional method for solving the Navier-Stokes equation</title><author>Wei, G.W. ; Zhang, D.S. ; Althorpe, S.C. ; Kouri, D.J. ; Hoffman, D.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e1538d8f9db0c5380868c84ad615902434ecaaf0ba3dedb56c4c8f3f3b1f17203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Approximations and expansions</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Nonlinear waves and nonlinear wave propagation (including parametric effects, mode coupling, ponderomotive effects, etc.)</topic><topic>Numerical approximation and analysis</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Waves, oscillations, and instabilities in plasmas and intense beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, G.W.</creatorcontrib><creatorcontrib>Zhang, D.S.</creatorcontrib><creatorcontrib>Althorpe, S.C.</creatorcontrib><creatorcontrib>Kouri, D.J.</creatorcontrib><creatorcontrib>Hoffman, D.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, G.W.</au><au>Zhang, D.S.</au><au>Althorpe, S.C.</au><au>Kouri, D.J.</au><au>Hoffman, D.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet-distributed approximating functional method for solving the Navier-Stokes equation</atitle><jtitle>Computer physics communications</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>115</volume><issue>1</issue><spage>18</spage><epage>24</epage><pages>18-24</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><coden>CPHCBZ</coden><abstract>The Navier-Stokes equations with both periodic and non-slip boundary conditions are solved using a new class of wavelets based on distributed approximating functionals (DAFs). Extremely high accuracy is found in our wavelet-DAF integration of the analytically solvable Taylor problem, using 32 grid points in each of the two spatial dimensions, for Reynolds numbers from Re = 20 to Re = ∞. The present approach is then applied to the lid-driven cavity problem with standard non-slip boundary conditions. Physically reasonable solutions are obtained for Reynolds numbers as high as 3200, using 63 grid points in each spatial dimension. Our results indicate that wavelet methods are readily applicable to those dynamical problems for which the existence of possible singularities demands highly accurate solution methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0010-4655(98)00113-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 1998-12, Vol.115 (1), p.18-24
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_26853935
source Elsevier ScienceDirect Journals
subjects Approximations and expansions
Computational techniques
Exact sciences and technology
Function theory, analysis
Mathematical methods in physics
Nonlinear waves and nonlinear wave propagation (including parametric effects, mode coupling, ponderomotive effects, etc.)
Numerical approximation and analysis
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Waves, oscillations, and instabilities in plasmas and intense beams
title Wavelet-distributed approximating functional method for solving the Navier-Stokes equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet-distributed%20approximating%20functional%20method%20for%20solving%20the%20Navier-Stokes%20equation&rft.jtitle=Computer%20physics%20communications&rft.au=Wei,%20G.W.&rft.date=1998-12-01&rft.volume=115&rft.issue=1&rft.spage=18&rft.epage=24&rft.pages=18-24&rft.issn=0010-4655&rft.eissn=1879-2944&rft.coden=CPHCBZ&rft_id=info:doi/10.1016/S0010-4655(98)00113-1&rft_dat=%3Cproquest_cross%3E26853935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26853935&rft_id=info:pmid/&rft_els_id=S0010465598001131&rfr_iscdi=true