Wavelet-distributed approximating functional method for solving the Navier-Stokes equation
The Navier-Stokes equations with both periodic and non-slip boundary conditions are solved using a new class of wavelets based on distributed approximating functionals (DAFs). Extremely high accuracy is found in our wavelet-DAF integration of the analytically solvable Taylor problem, using 32 grid p...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 1998-12, Vol.115 (1), p.18-24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 18 |
container_title | Computer physics communications |
container_volume | 115 |
creator | Wei, G.W. Zhang, D.S. Althorpe, S.C. Kouri, D.J. Hoffman, D.K. |
description | The Navier-Stokes equations with both periodic and non-slip boundary conditions are solved using a new class of wavelets based on distributed approximating functionals (DAFs). Extremely high accuracy is found in our wavelet-DAF integration of the analytically solvable Taylor problem, using 32 grid points in each of the two spatial dimensions, for Reynolds numbers from Re = 20 to Re = ∞. The present approach is then applied to the lid-driven cavity problem with standard non-slip boundary conditions. Physically reasonable solutions are obtained for Reynolds numbers as high as 3200, using 63 grid points in each spatial dimension. Our results indicate that wavelet methods are readily applicable to those dynamical problems for which the existence of possible singularities demands highly accurate solution methods. |
doi_str_mv | 10.1016/S0010-4655(98)00113-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26853935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465598001131</els_id><sourcerecordid>26853935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e1538d8f9db0c5380868c84ad615902434ecaaf0ba3dedb56c4c8f3f3b1f17203</originalsourceid><addsrcrecordid>eNqFkMtKAzEUQIMoWKufIMxCRBejyWQemZWI-IKiCxXBTcgkNzY6nbRJpujfm2mLLl3lhnvu6yB0SPAZwaQ8f8KY4DQvi-KkZqfxQ2hKttCIsKpOszrPt9HoF9lFe95_YIyrqqYj9PYqltBCSJXxwZmmD6ASMZ87-2VmIpjuPdF9J4OxnWiTGYSpVYm2LvG2XQ7ZMIXkQSwNuPQp2E_wCSx6MfD7aEeL1sPB5h2jl5vr56u7dPJ4e391OUklLauQAikoU0zXqsEyhpiVTLJcqJIUNc5ymoMUQuNGUAWqKUqZS6appg3RpMowHaPjdd-49KIHH_jMeAltKzqwvedZyQpa0yKCxRqUznrvQPO5i0e6b04wH0zylUk-aOI14yuTnMS6o80A4aVotROdNP6vOC6akyxiF2sM4rGDEO6lgU6CMg5k4Mqafwb9APcEiYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26853935</pqid></control><display><type>article</type><title>Wavelet-distributed approximating functional method for solving the Navier-Stokes equation</title><source>Elsevier ScienceDirect Journals</source><creator>Wei, G.W. ; Zhang, D.S. ; Althorpe, S.C. ; Kouri, D.J. ; Hoffman, D.K.</creator><creatorcontrib>Wei, G.W. ; Zhang, D.S. ; Althorpe, S.C. ; Kouri, D.J. ; Hoffman, D.K.</creatorcontrib><description>The Navier-Stokes equations with both periodic and non-slip boundary conditions are solved using a new class of wavelets based on distributed approximating functionals (DAFs). Extremely high accuracy is found in our wavelet-DAF integration of the analytically solvable Taylor problem, using 32 grid points in each of the two spatial dimensions, for Reynolds numbers from Re = 20 to Re = ∞. The present approach is then applied to the lid-driven cavity problem with standard non-slip boundary conditions. Physically reasonable solutions are obtained for Reynolds numbers as high as 3200, using 63 grid points in each spatial dimension. Our results indicate that wavelet methods are readily applicable to those dynamical problems for which the existence of possible singularities demands highly accurate solution methods.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/S0010-4655(98)00113-1</identifier><identifier>CODEN: CPHCBZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximations and expansions ; Computational techniques ; Exact sciences and technology ; Function theory, analysis ; Mathematical methods in physics ; Nonlinear waves and nonlinear wave propagation (including parametric effects, mode coupling, ponderomotive effects, etc.) ; Numerical approximation and analysis ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Waves, oscillations, and instabilities in plasmas and intense beams</subject><ispartof>Computer physics communications, 1998-12, Vol.115 (1), p.18-24</ispartof><rights>1998</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e1538d8f9db0c5380868c84ad615902434ecaaf0ba3dedb56c4c8f3f3b1f17203</citedby><cites>FETCH-LOGICAL-c367t-e1538d8f9db0c5380868c84ad615902434ecaaf0ba3dedb56c4c8f3f3b1f17203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465598001131$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1615412$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, G.W.</creatorcontrib><creatorcontrib>Zhang, D.S.</creatorcontrib><creatorcontrib>Althorpe, S.C.</creatorcontrib><creatorcontrib>Kouri, D.J.</creatorcontrib><creatorcontrib>Hoffman, D.K.</creatorcontrib><title>Wavelet-distributed approximating functional method for solving the Navier-Stokes equation</title><title>Computer physics communications</title><description>The Navier-Stokes equations with both periodic and non-slip boundary conditions are solved using a new class of wavelets based on distributed approximating functionals (DAFs). Extremely high accuracy is found in our wavelet-DAF integration of the analytically solvable Taylor problem, using 32 grid points in each of the two spatial dimensions, for Reynolds numbers from Re = 20 to Re = ∞. The present approach is then applied to the lid-driven cavity problem with standard non-slip boundary conditions. Physically reasonable solutions are obtained for Reynolds numbers as high as 3200, using 63 grid points in each spatial dimension. Our results indicate that wavelet methods are readily applicable to those dynamical problems for which the existence of possible singularities demands highly accurate solution methods.</description><subject>Approximations and expansions</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Nonlinear waves and nonlinear wave propagation (including parametric effects, mode coupling, ponderomotive effects, etc.)</subject><subject>Numerical approximation and analysis</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Waves, oscillations, and instabilities in plasmas and intense beams</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUQIMoWKufIMxCRBejyWQemZWI-IKiCxXBTcgkNzY6nbRJpujfm2mLLl3lhnvu6yB0SPAZwaQ8f8KY4DQvi-KkZqfxQ2hKttCIsKpOszrPt9HoF9lFe95_YIyrqqYj9PYqltBCSJXxwZmmD6ASMZ87-2VmIpjuPdF9J4OxnWiTGYSpVYm2LvG2XQ7ZMIXkQSwNuPQp2E_wCSx6MfD7aEeL1sPB5h2jl5vr56u7dPJ4e391OUklLauQAikoU0zXqsEyhpiVTLJcqJIUNc5ymoMUQuNGUAWqKUqZS6appg3RpMowHaPjdd-49KIHH_jMeAltKzqwvedZyQpa0yKCxRqUznrvQPO5i0e6b04wH0zylUk-aOI14yuTnMS6o80A4aVotROdNP6vOC6akyxiF2sM4rGDEO6lgU6CMg5k4Mqafwb9APcEiYA</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Wei, G.W.</creator><creator>Zhang, D.S.</creator><creator>Althorpe, S.C.</creator><creator>Kouri, D.J.</creator><creator>Hoffman, D.K.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19981201</creationdate><title>Wavelet-distributed approximating functional method for solving the Navier-Stokes equation</title><author>Wei, G.W. ; Zhang, D.S. ; Althorpe, S.C. ; Kouri, D.J. ; Hoffman, D.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e1538d8f9db0c5380868c84ad615902434ecaaf0ba3dedb56c4c8f3f3b1f17203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Approximations and expansions</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Nonlinear waves and nonlinear wave propagation (including parametric effects, mode coupling, ponderomotive effects, etc.)</topic><topic>Numerical approximation and analysis</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Waves, oscillations, and instabilities in plasmas and intense beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, G.W.</creatorcontrib><creatorcontrib>Zhang, D.S.</creatorcontrib><creatorcontrib>Althorpe, S.C.</creatorcontrib><creatorcontrib>Kouri, D.J.</creatorcontrib><creatorcontrib>Hoffman, D.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, G.W.</au><au>Zhang, D.S.</au><au>Althorpe, S.C.</au><au>Kouri, D.J.</au><au>Hoffman, D.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet-distributed approximating functional method for solving the Navier-Stokes equation</atitle><jtitle>Computer physics communications</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>115</volume><issue>1</issue><spage>18</spage><epage>24</epage><pages>18-24</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><coden>CPHCBZ</coden><abstract>The Navier-Stokes equations with both periodic and non-slip boundary conditions are solved using a new class of wavelets based on distributed approximating functionals (DAFs). Extremely high accuracy is found in our wavelet-DAF integration of the analytically solvable Taylor problem, using 32 grid points in each of the two spatial dimensions, for Reynolds numbers from Re = 20 to Re = ∞. The present approach is then applied to the lid-driven cavity problem with standard non-slip boundary conditions. Physically reasonable solutions are obtained for Reynolds numbers as high as 3200, using 63 grid points in each spatial dimension. Our results indicate that wavelet methods are readily applicable to those dynamical problems for which the existence of possible singularities demands highly accurate solution methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0010-4655(98)00113-1</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 1998-12, Vol.115 (1), p.18-24 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_26853935 |
source | Elsevier ScienceDirect Journals |
subjects | Approximations and expansions Computational techniques Exact sciences and technology Function theory, analysis Mathematical methods in physics Nonlinear waves and nonlinear wave propagation (including parametric effects, mode coupling, ponderomotive effects, etc.) Numerical approximation and analysis Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Waves, oscillations, and instabilities in plasmas and intense beams |
title | Wavelet-distributed approximating functional method for solving the Navier-Stokes equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet-distributed%20approximating%20functional%20method%20for%20solving%20the%20Navier-Stokes%20equation&rft.jtitle=Computer%20physics%20communications&rft.au=Wei,%20G.W.&rft.date=1998-12-01&rft.volume=115&rft.issue=1&rft.spage=18&rft.epage=24&rft.pages=18-24&rft.issn=0010-4655&rft.eissn=1879-2944&rft.coden=CPHCBZ&rft_id=info:doi/10.1016/S0010-4655(98)00113-1&rft_dat=%3Cproquest_cross%3E26853935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26853935&rft_id=info:pmid/&rft_els_id=S0010465598001131&rfr_iscdi=true |