Interface structure and growth mode of quantum wire and quantum dot GaAs-AlAs structures on corrugated (311)A surfaces

GaAs-AlAs corrugated superlattices (CSL) are formed on spontaneously nanofaceted (311)A surfaces. Using high-resolution transmission electron microscopy (HRTEM) along the [2 33] zone axis with an appropriate image evaluation technique to enhance the contrast between GaAs and AlAs we found two distin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2001-05, Vol.30 (5), p.463-470
Hauptverfasser: Ledentsov, N. N., Litvinov, D., Rosenauer, A., Gerthsen, D., Soshnikov, I. P., Shchukin, V. A., Ustinov, V. M., Egorov, A. Yu, Zukov, A. E., Volodin, V. A., Efremov, M. D., Preobrazhenskii, V. V., Semyagin, B. P., Bimberg, D., Alferov, Zh. I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 5
container_start_page 463
container_title Journal of electronic materials
container_volume 30
creator Ledentsov, N. N.
Litvinov, D.
Rosenauer, A.
Gerthsen, D.
Soshnikov, I. P.
Shchukin, V. A.
Ustinov, V. M.
Egorov, A. Yu
Zukov, A. E.
Volodin, V. A.
Efremov, M. D.
Preobrazhenskii, V. V.
Semyagin, B. P.
Bimberg, D.
Alferov, Zh. I.
description GaAs-AlAs corrugated superlattices (CSL) are formed on spontaneously nanofaceted (311)A surfaces. Using high-resolution transmission electron microscopy (HRTEM) along the [2 33] zone axis with an appropriate image evaluation technique to enhance the contrast between GaAs and AlAs we found two distinct lateral periodicities along the [01 1] directions for two different CSL layer thickness regimes. For multilayer deposition with GaAs layer thickness exceeding 1 nm the lateral periodicity of 3.2 nm is clearly revealed. The contrast originates from the thickness modulation of both AlAs and GaAs layers with a period of 3.2 nm in the [01 1] direction. The corrugation height is about 1 nm and it is symmetric for both upper and lower GaAs-AlAs interfaces. Thicker sections of the thickness-modulated AlAs and GaAs layers of the CSL are shifted by a half period with respect to each other. In the regime when the GaAs deposited average thickness is below 1 nm, which is necessary for complete coverage of the AlAs surface, a lateral periodicity of [similar to]1.5-2 nm is additionally revealed. We attribute this effect to the formation of local GaAs clusters dispersed on a corrugated (311)A AlAs surface resulting in a local phase reversal of the AlAs surface in their vicinity upon subsequent overgrowth. This reversal can be explained by the same effect as the phase shift of the surface corrugation upon heteroepitaxy on (311)A. In our model AlAs does not wet the GaAs cluster surface, unless different more energetically favorable scenario is possible. This causes accumulation of AlAs in the vicinity of the GaAs cluster and, as a result, the local phase reversal of the AlAs surface. The AlAs corrugated surface domains with different phases coexist on the surface resulting in an additional periodicity revealed in the HREM contrast modulation. Additionally HRTEM studies indicate that the AlAs-GaAs interface inclination angles in both regimes are 40 degree and 140 degree with respect to the flat (311) surface in an agreement with the {331} facet geometry model proposed by R. Notzel, N.N. Ledentsov, L. Daweritz, M. Hohenstein, and K. Ploog [Phys. Rev. Lett. 67, 1812 (1991)].
doi_str_mv 10.1007/s11664-001-0084-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26853868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26853868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-4e186f97bd0e0a76f078aaa11142fdcfe0dfdac03300162744ec2a198247fce73</originalsourceid><addsrcrecordid>eNpdkU9LAzEQxYMoWKsfwFvwIHpYzWyyu9njUrQWCl4UvIWYTWrL7qbNH4vf3tRWBA_DwMyPN294CF0CuQNCqnsPUJYsIwRScZbBERpBwWgGvHw7RiNCS8iKnBan6Mz7VeIK4DBCn7MhaGek0tgHF1WITmM5tHjh7DZ84N62GluDN1EOIfZ4uzzsfwetDXgqG581XeP_NDy2A1bWubiQQbf4hgLcNtjHn1v-HJ0Y2Xl9cehj9Pr48DJ5yubP09mkmWeKEhoyppN9U1fvLdFEVqUhFZdSAgDLTauMJq1ppSKUpofKvGJMq1xCzXNWGaUrOkbXe921s5uofRD90ivddXLQNnqRl7ygvOQJvPoHrmx0Q_ImcsI4hxrqBMEeUs5677QRa7fspfsSQMQuBrGPQSQ3YheDAPoNQ4J7MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204881919</pqid></control><display><type>article</type><title>Interface structure and growth mode of quantum wire and quantum dot GaAs-AlAs structures on corrugated (311)A surfaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Ledentsov, N. N. ; Litvinov, D. ; Rosenauer, A. ; Gerthsen, D. ; Soshnikov, I. P. ; Shchukin, V. A. ; Ustinov, V. M. ; Egorov, A. Yu ; Zukov, A. E. ; Volodin, V. A. ; Efremov, M. D. ; Preobrazhenskii, V. V. ; Semyagin, B. P. ; Bimberg, D. ; Alferov, Zh. I.</creator><creatorcontrib>Ledentsov, N. N. ; Litvinov, D. ; Rosenauer, A. ; Gerthsen, D. ; Soshnikov, I. P. ; Shchukin, V. A. ; Ustinov, V. M. ; Egorov, A. Yu ; Zukov, A. E. ; Volodin, V. A. ; Efremov, M. D. ; Preobrazhenskii, V. V. ; Semyagin, B. P. ; Bimberg, D. ; Alferov, Zh. I.</creatorcontrib><description>GaAs-AlAs corrugated superlattices (CSL) are formed on spontaneously nanofaceted (311)A surfaces. Using high-resolution transmission electron microscopy (HRTEM) along the [2 33] zone axis with an appropriate image evaluation technique to enhance the contrast between GaAs and AlAs we found two distinct lateral periodicities along the [01 1] directions for two different CSL layer thickness regimes. For multilayer deposition with GaAs layer thickness exceeding 1 nm the lateral periodicity of 3.2 nm is clearly revealed. The contrast originates from the thickness modulation of both AlAs and GaAs layers with a period of 3.2 nm in the [01 1] direction. The corrugation height is about 1 nm and it is symmetric for both upper and lower GaAs-AlAs interfaces. Thicker sections of the thickness-modulated AlAs and GaAs layers of the CSL are shifted by a half period with respect to each other. In the regime when the GaAs deposited average thickness is below 1 nm, which is necessary for complete coverage of the AlAs surface, a lateral periodicity of [similar to]1.5-2 nm is additionally revealed. We attribute this effect to the formation of local GaAs clusters dispersed on a corrugated (311)A AlAs surface resulting in a local phase reversal of the AlAs surface in their vicinity upon subsequent overgrowth. This reversal can be explained by the same effect as the phase shift of the surface corrugation upon heteroepitaxy on (311)A. In our model AlAs does not wet the GaAs cluster surface, unless different more energetically favorable scenario is possible. This causes accumulation of AlAs in the vicinity of the GaAs cluster and, as a result, the local phase reversal of the AlAs surface. The AlAs corrugated surface domains with different phases coexist on the surface resulting in an additional periodicity revealed in the HREM contrast modulation. Additionally HRTEM studies indicate that the AlAs-GaAs interface inclination angles in both regimes are 40 degree and 140 degree with respect to the flat (311) surface in an agreement with the {331} facet geometry model proposed by R. Notzel, N.N. Ledentsov, L. Daweritz, M. Hohenstein, and K. Ploog [Phys. Rev. Lett. 67, 1812 (1991)].</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-001-0084-1</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><ispartof>Journal of electronic materials, 2001-05, Vol.30 (5), p.463-470</ispartof><rights>Copyright Minerals, Metals &amp; Materials Society May 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-4e186f97bd0e0a76f078aaa11142fdcfe0dfdac03300162744ec2a198247fce73</citedby><cites>FETCH-LOGICAL-c303t-4e186f97bd0e0a76f078aaa11142fdcfe0dfdac03300162744ec2a198247fce73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ledentsov, N. N.</creatorcontrib><creatorcontrib>Litvinov, D.</creatorcontrib><creatorcontrib>Rosenauer, A.</creatorcontrib><creatorcontrib>Gerthsen, D.</creatorcontrib><creatorcontrib>Soshnikov, I. P.</creatorcontrib><creatorcontrib>Shchukin, V. A.</creatorcontrib><creatorcontrib>Ustinov, V. M.</creatorcontrib><creatorcontrib>Egorov, A. Yu</creatorcontrib><creatorcontrib>Zukov, A. E.</creatorcontrib><creatorcontrib>Volodin, V. A.</creatorcontrib><creatorcontrib>Efremov, M. D.</creatorcontrib><creatorcontrib>Preobrazhenskii, V. V.</creatorcontrib><creatorcontrib>Semyagin, B. P.</creatorcontrib><creatorcontrib>Bimberg, D.</creatorcontrib><creatorcontrib>Alferov, Zh. I.</creatorcontrib><title>Interface structure and growth mode of quantum wire and quantum dot GaAs-AlAs structures on corrugated (311)A surfaces</title><title>Journal of electronic materials</title><description>GaAs-AlAs corrugated superlattices (CSL) are formed on spontaneously nanofaceted (311)A surfaces. Using high-resolution transmission electron microscopy (HRTEM) along the [2 33] zone axis with an appropriate image evaluation technique to enhance the contrast between GaAs and AlAs we found two distinct lateral periodicities along the [01 1] directions for two different CSL layer thickness regimes. For multilayer deposition with GaAs layer thickness exceeding 1 nm the lateral periodicity of 3.2 nm is clearly revealed. The contrast originates from the thickness modulation of both AlAs and GaAs layers with a period of 3.2 nm in the [01 1] direction. The corrugation height is about 1 nm and it is symmetric for both upper and lower GaAs-AlAs interfaces. Thicker sections of the thickness-modulated AlAs and GaAs layers of the CSL are shifted by a half period with respect to each other. In the regime when the GaAs deposited average thickness is below 1 nm, which is necessary for complete coverage of the AlAs surface, a lateral periodicity of [similar to]1.5-2 nm is additionally revealed. We attribute this effect to the formation of local GaAs clusters dispersed on a corrugated (311)A AlAs surface resulting in a local phase reversal of the AlAs surface in their vicinity upon subsequent overgrowth. This reversal can be explained by the same effect as the phase shift of the surface corrugation upon heteroepitaxy on (311)A. In our model AlAs does not wet the GaAs cluster surface, unless different more energetically favorable scenario is possible. This causes accumulation of AlAs in the vicinity of the GaAs cluster and, as a result, the local phase reversal of the AlAs surface. The AlAs corrugated surface domains with different phases coexist on the surface resulting in an additional periodicity revealed in the HREM contrast modulation. Additionally HRTEM studies indicate that the AlAs-GaAs interface inclination angles in both regimes are 40 degree and 140 degree with respect to the flat (311) surface in an agreement with the {331} facet geometry model proposed by R. Notzel, N.N. Ledentsov, L. Daweritz, M. Hohenstein, and K. Ploog [Phys. Rev. Lett. 67, 1812 (1991)].</description><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU9LAzEQxYMoWKsfwFvwIHpYzWyyu9njUrQWCl4UvIWYTWrL7qbNH4vf3tRWBA_DwMyPN294CF0CuQNCqnsPUJYsIwRScZbBERpBwWgGvHw7RiNCS8iKnBan6Mz7VeIK4DBCn7MhaGek0tgHF1WITmM5tHjh7DZ84N62GluDN1EOIfZ4uzzsfwetDXgqG581XeP_NDy2A1bWubiQQbf4hgLcNtjHn1v-HJ0Y2Xl9cehj9Pr48DJ5yubP09mkmWeKEhoyppN9U1fvLdFEVqUhFZdSAgDLTauMJq1ppSKUpofKvGJMq1xCzXNWGaUrOkbXe921s5uofRD90ivddXLQNnqRl7ygvOQJvPoHrmx0Q_ImcsI4hxrqBMEeUs5677QRa7fspfsSQMQuBrGPQSQ3YheDAPoNQ4J7MQ</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Ledentsov, N. N.</creator><creator>Litvinov, D.</creator><creator>Rosenauer, A.</creator><creator>Gerthsen, D.</creator><creator>Soshnikov, I. P.</creator><creator>Shchukin, V. A.</creator><creator>Ustinov, V. M.</creator><creator>Egorov, A. Yu</creator><creator>Zukov, A. E.</creator><creator>Volodin, V. A.</creator><creator>Efremov, M. D.</creator><creator>Preobrazhenskii, V. V.</creator><creator>Semyagin, B. P.</creator><creator>Bimberg, D.</creator><creator>Alferov, Zh. I.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20010501</creationdate><title>Interface structure and growth mode of quantum wire and quantum dot GaAs-AlAs structures on corrugated (311)A surfaces</title><author>Ledentsov, N. N. ; Litvinov, D. ; Rosenauer, A. ; Gerthsen, D. ; Soshnikov, I. P. ; Shchukin, V. A. ; Ustinov, V. M. ; Egorov, A. Yu ; Zukov, A. E. ; Volodin, V. A. ; Efremov, M. D. ; Preobrazhenskii, V. V. ; Semyagin, B. P. ; Bimberg, D. ; Alferov, Zh. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-4e186f97bd0e0a76f078aaa11142fdcfe0dfdac03300162744ec2a198247fce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ledentsov, N. N.</creatorcontrib><creatorcontrib>Litvinov, D.</creatorcontrib><creatorcontrib>Rosenauer, A.</creatorcontrib><creatorcontrib>Gerthsen, D.</creatorcontrib><creatorcontrib>Soshnikov, I. P.</creatorcontrib><creatorcontrib>Shchukin, V. A.</creatorcontrib><creatorcontrib>Ustinov, V. M.</creatorcontrib><creatorcontrib>Egorov, A. Yu</creatorcontrib><creatorcontrib>Zukov, A. E.</creatorcontrib><creatorcontrib>Volodin, V. A.</creatorcontrib><creatorcontrib>Efremov, M. D.</creatorcontrib><creatorcontrib>Preobrazhenskii, V. V.</creatorcontrib><creatorcontrib>Semyagin, B. P.</creatorcontrib><creatorcontrib>Bimberg, D.</creatorcontrib><creatorcontrib>Alferov, Zh. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ledentsov, N. N.</au><au>Litvinov, D.</au><au>Rosenauer, A.</au><au>Gerthsen, D.</au><au>Soshnikov, I. P.</au><au>Shchukin, V. A.</au><au>Ustinov, V. M.</au><au>Egorov, A. Yu</au><au>Zukov, A. E.</au><au>Volodin, V. A.</au><au>Efremov, M. D.</au><au>Preobrazhenskii, V. V.</au><au>Semyagin, B. P.</au><au>Bimberg, D.</au><au>Alferov, Zh. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface structure and growth mode of quantum wire and quantum dot GaAs-AlAs structures on corrugated (311)A surfaces</atitle><jtitle>Journal of electronic materials</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>30</volume><issue>5</issue><spage>463</spage><epage>470</epage><pages>463-470</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>GaAs-AlAs corrugated superlattices (CSL) are formed on spontaneously nanofaceted (311)A surfaces. Using high-resolution transmission electron microscopy (HRTEM) along the [2 33] zone axis with an appropriate image evaluation technique to enhance the contrast between GaAs and AlAs we found two distinct lateral periodicities along the [01 1] directions for two different CSL layer thickness regimes. For multilayer deposition with GaAs layer thickness exceeding 1 nm the lateral periodicity of 3.2 nm is clearly revealed. The contrast originates from the thickness modulation of both AlAs and GaAs layers with a period of 3.2 nm in the [01 1] direction. The corrugation height is about 1 nm and it is symmetric for both upper and lower GaAs-AlAs interfaces. Thicker sections of the thickness-modulated AlAs and GaAs layers of the CSL are shifted by a half period with respect to each other. In the regime when the GaAs deposited average thickness is below 1 nm, which is necessary for complete coverage of the AlAs surface, a lateral periodicity of [similar to]1.5-2 nm is additionally revealed. We attribute this effect to the formation of local GaAs clusters dispersed on a corrugated (311)A AlAs surface resulting in a local phase reversal of the AlAs surface in their vicinity upon subsequent overgrowth. This reversal can be explained by the same effect as the phase shift of the surface corrugation upon heteroepitaxy on (311)A. In our model AlAs does not wet the GaAs cluster surface, unless different more energetically favorable scenario is possible. This causes accumulation of AlAs in the vicinity of the GaAs cluster and, as a result, the local phase reversal of the AlAs surface. The AlAs corrugated surface domains with different phases coexist on the surface resulting in an additional periodicity revealed in the HREM contrast modulation. Additionally HRTEM studies indicate that the AlAs-GaAs interface inclination angles in both regimes are 40 degree and 140 degree with respect to the flat (311) surface in an agreement with the {331} facet geometry model proposed by R. Notzel, N.N. Ledentsov, L. Daweritz, M. Hohenstein, and K. Ploog [Phys. Rev. Lett. 67, 1812 (1991)].</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11664-001-0084-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2001-05, Vol.30 (5), p.463-470
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_26853868
source Springer Nature - Complete Springer Journals
title Interface structure and growth mode of quantum wire and quantum dot GaAs-AlAs structures on corrugated (311)A surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20structure%20and%20growth%20mode%20of%20quantum%20wire%20and%20quantum%20dot%20GaAs-AlAs%20structures%20on%20corrugated%20(311)A%20surfaces&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Ledentsov,%20N.%20N.&rft.date=2001-05-01&rft.volume=30&rft.issue=5&rft.spage=463&rft.epage=470&rft.pages=463-470&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-001-0084-1&rft_dat=%3Cproquest_cross%3E26853868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204881919&rft_id=info:pmid/&rfr_iscdi=true