Haplotype‐resolved genome assembly of Bletilla striata (Thunb.) Reichb.f. to elucidate medicinal value

SUMMARY Bletilla striata, commonly known as baiji, is a species used in traditional Chinese medicine; it is highly regarded for its medicinal applications and therefore has high economic value. Here, we report a high‐quality haplotype‐resolved genome of B. striata, haplotype A (2.37 Gb, with a scaff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2022-09, Vol.111 (5), p.1340-1353
Hauptverfasser: Jiang, Lan, Lin, Mengfei, Wang, Han, Song, Hui, Zhang, Lin, Huang, Qingyu, Chen, Renrui, Song, Cheng, Li, Guohui, Cao, Yunpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1353
container_issue 5
container_start_page 1340
container_title The Plant journal : for cell and molecular biology
container_volume 111
creator Jiang, Lan
Lin, Mengfei
Wang, Han
Song, Hui
Zhang, Lin
Huang, Qingyu
Chen, Renrui
Song, Cheng
Li, Guohui
Cao, Yunpeng
description SUMMARY Bletilla striata, commonly known as baiji, is a species used in traditional Chinese medicine; it is highly regarded for its medicinal applications and therefore has high economic value. Here, we report a high‐quality haplotype‐resolved genome of B. striata, haplotype A (2.37 Gb, with a scaffold N50 of 146.39 Mb and a contig N50 of 1.65 Mb) and haplotype B (2.43 Gb, with a scaffold N50 of 150.22 Mb and a contig N50 of 1.66 Mb), assembled from high‐fidelity (HiFi) reads and chromosome conformation capture (Hi‐C) reads. We find evidence that B. striata has undergone two whole‐genome duplication (WGD) events: an ancient WGD event shared by most monocots and a recent WGD event unique to all orchids. We also reconstructed the ancestral orchid karyotype (AOK) of 18 ancient chromosomes and the evolutionary trajectories of 16 modern B. striata chromosomes. Comparative genomic analysis suggests that the expanded gene families of B. striata might play important roles in secondary metabolite biosynthesis and environmental adaptation. By combining genomic and transcriptomic data, we identified the 10 core members from nine gene families that were probably involved in B. striata polysaccharide (BSP) biosynthesis. Based on virus‐induced gene silencing (VIGS) and yeast two‐hybrid experiments, we present an MYB transcription factor (TF), BsMYB2, that can regulate BSP biosynthesis by directly interacting with eight key BSP‐related genes: sacA1, HK1, scrK1, scrK2, GPI1, manA1, GMPP1 and UGP2_1. Our study will enhance the understanding of orchid evolution and accelerate the molecular‐assisted breeding of B. striata for improving traits of medicinal value. Significance Statement We first report a high‐quality haplotype‐resolved genome of B. striata, Haplotype‐A (2.37 Gb with a scaffold N50 of 146.39 Mb) and Haplotype‐B (2.43 Gb with a scaffold N50 of 150.22 Mb), and exhibit a MYB transcription factor (TF), BsMYB2, which can regulate BSPs biosynthesis by directly interacting with eight key BSPs‐related gene. This study will enhance the understanding of orchid evolution and accelerate molecular‐assisted breeding of B. striata for improving medicinal‐value traits.
doi_str_mv 10.1111/tpj.15892
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2685039530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708617481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3302-e59e76360983dfbb9be5619dd64438e2970f0c18b8ba6036f04c795a32982c3d3</originalsourceid><addsrcrecordid>eNp10LFOwzAQBmALgUQpDLyBJZZ2SGrHiWOPgICCKoFQkdgix7lQV04d4qQoG4_AM_IkBMqExC23fHf69SN0SklIh5m19TqkiZDRHhpRxpOAUfa8j0ZEchKkMY0O0ZH3a0Joyng8Qqu5qq1r-xo-3z8a8M5uocAvsHEVYOU9VLntsSvxhYXWWKuwbxujWoUny1W3ycMpfgSjV3lYhrh1GGynTaFawBUURpuNsnirbAfH6KBU1sPJ7x6jp-ur5eU8WNzf3F6eLwLNGIkCSCSknHEiBSvKPJc5JJzKouBxzAREMiUl0VTkIlecMF6SWKcyUSySItKsYGM02f2tG_fagW-zyngNQ_INuM5nERcJYTJhZKBnf-jadc2QeFApEZymsaCDmu6Ubpz3DZRZ3ZhKNX1GSfbdeTZ0nv10PtjZzr4ZC_3_MFs-3O0uvgCrW4NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708617481</pqid></control><display><type>article</type><title>Haplotype‐resolved genome assembly of Bletilla striata (Thunb.) Reichb.f. to elucidate medicinal value</title><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jiang, Lan ; Lin, Mengfei ; Wang, Han ; Song, Hui ; Zhang, Lin ; Huang, Qingyu ; Chen, Renrui ; Song, Cheng ; Li, Guohui ; Cao, Yunpeng</creator><creatorcontrib>Jiang, Lan ; Lin, Mengfei ; Wang, Han ; Song, Hui ; Zhang, Lin ; Huang, Qingyu ; Chen, Renrui ; Song, Cheng ; Li, Guohui ; Cao, Yunpeng</creatorcontrib><description>SUMMARY Bletilla striata, commonly known as baiji, is a species used in traditional Chinese medicine; it is highly regarded for its medicinal applications and therefore has high economic value. Here, we report a high‐quality haplotype‐resolved genome of B. striata, haplotype A (2.37 Gb, with a scaffold N50 of 146.39 Mb and a contig N50 of 1.65 Mb) and haplotype B (2.43 Gb, with a scaffold N50 of 150.22 Mb and a contig N50 of 1.66 Mb), assembled from high‐fidelity (HiFi) reads and chromosome conformation capture (Hi‐C) reads. We find evidence that B. striata has undergone two whole‐genome duplication (WGD) events: an ancient WGD event shared by most monocots and a recent WGD event unique to all orchids. We also reconstructed the ancestral orchid karyotype (AOK) of 18 ancient chromosomes and the evolutionary trajectories of 16 modern B. striata chromosomes. Comparative genomic analysis suggests that the expanded gene families of B. striata might play important roles in secondary metabolite biosynthesis and environmental adaptation. By combining genomic and transcriptomic data, we identified the 10 core members from nine gene families that were probably involved in B. striata polysaccharide (BSP) biosynthesis. Based on virus‐induced gene silencing (VIGS) and yeast two‐hybrid experiments, we present an MYB transcription factor (TF), BsMYB2, that can regulate BSP biosynthesis by directly interacting with eight key BSP‐related genes: sacA1, HK1, scrK1, scrK2, GPI1, manA1, GMPP1 and UGP2_1. Our study will enhance the understanding of orchid evolution and accelerate the molecular‐assisted breeding of B. striata for improving traits of medicinal value. Significance Statement We first report a high‐quality haplotype‐resolved genome of B. striata, Haplotype‐A (2.37 Gb with a scaffold N50 of 146.39 Mb) and Haplotype‐B (2.43 Gb with a scaffold N50 of 150.22 Mb), and exhibit a MYB transcription factor (TF), BsMYB2, which can regulate BSPs biosynthesis by directly interacting with eight key BSPs‐related gene. This study will enhance the understanding of orchid evolution and accelerate molecular‐assisted breeding of B. striata for improving medicinal‐value traits.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.15892</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Biosynthesis ; Bletilla striata ; Chromosomes ; Conformation ; Gene families ; Gene silencing ; genome ; Genomes ; Genomic analysis ; haplotype ; Haplotypes ; Herbal medicine ; Karyotypes ; Metabolites ; MYB transcription factor ; polysaccharide ; Polysaccharides ; Scaffolds ; Traditional Chinese medicine ; Transcriptomics ; Yeasts</subject><ispartof>The Plant journal : for cell and molecular biology, 2022-09, Vol.111 (5), p.1340-1353</ispartof><rights>2022 Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2022 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3302-e59e76360983dfbb9be5619dd64438e2970f0c18b8ba6036f04c795a32982c3d3</citedby><cites>FETCH-LOGICAL-c3302-e59e76360983dfbb9be5619dd64438e2970f0c18b8ba6036f04c795a32982c3d3</cites><orcidid>0000-0003-2778-1081 ; 0000-0001-5976-2382 ; 0000-0002-2455-0942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.15892$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.15892$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Jiang, Lan</creatorcontrib><creatorcontrib>Lin, Mengfei</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Song, Hui</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Huang, Qingyu</creatorcontrib><creatorcontrib>Chen, Renrui</creatorcontrib><creatorcontrib>Song, Cheng</creatorcontrib><creatorcontrib>Li, Guohui</creatorcontrib><creatorcontrib>Cao, Yunpeng</creatorcontrib><title>Haplotype‐resolved genome assembly of Bletilla striata (Thunb.) Reichb.f. to elucidate medicinal value</title><title>The Plant journal : for cell and molecular biology</title><description>SUMMARY Bletilla striata, commonly known as baiji, is a species used in traditional Chinese medicine; it is highly regarded for its medicinal applications and therefore has high economic value. Here, we report a high‐quality haplotype‐resolved genome of B. striata, haplotype A (2.37 Gb, with a scaffold N50 of 146.39 Mb and a contig N50 of 1.65 Mb) and haplotype B (2.43 Gb, with a scaffold N50 of 150.22 Mb and a contig N50 of 1.66 Mb), assembled from high‐fidelity (HiFi) reads and chromosome conformation capture (Hi‐C) reads. We find evidence that B. striata has undergone two whole‐genome duplication (WGD) events: an ancient WGD event shared by most monocots and a recent WGD event unique to all orchids. We also reconstructed the ancestral orchid karyotype (AOK) of 18 ancient chromosomes and the evolutionary trajectories of 16 modern B. striata chromosomes. Comparative genomic analysis suggests that the expanded gene families of B. striata might play important roles in secondary metabolite biosynthesis and environmental adaptation. By combining genomic and transcriptomic data, we identified the 10 core members from nine gene families that were probably involved in B. striata polysaccharide (BSP) biosynthesis. Based on virus‐induced gene silencing (VIGS) and yeast two‐hybrid experiments, we present an MYB transcription factor (TF), BsMYB2, that can regulate BSP biosynthesis by directly interacting with eight key BSP‐related genes: sacA1, HK1, scrK1, scrK2, GPI1, manA1, GMPP1 and UGP2_1. Our study will enhance the understanding of orchid evolution and accelerate the molecular‐assisted breeding of B. striata for improving traits of medicinal value. Significance Statement We first report a high‐quality haplotype‐resolved genome of B. striata, Haplotype‐A (2.37 Gb with a scaffold N50 of 146.39 Mb) and Haplotype‐B (2.43 Gb with a scaffold N50 of 150.22 Mb), and exhibit a MYB transcription factor (TF), BsMYB2, which can regulate BSPs biosynthesis by directly interacting with eight key BSPs‐related gene. This study will enhance the understanding of orchid evolution and accelerate molecular‐assisted breeding of B. striata for improving medicinal‐value traits.</description><subject>Biosynthesis</subject><subject>Bletilla striata</subject><subject>Chromosomes</subject><subject>Conformation</subject><subject>Gene families</subject><subject>Gene silencing</subject><subject>genome</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>haplotype</subject><subject>Haplotypes</subject><subject>Herbal medicine</subject><subject>Karyotypes</subject><subject>Metabolites</subject><subject>MYB transcription factor</subject><subject>polysaccharide</subject><subject>Polysaccharides</subject><subject>Scaffolds</subject><subject>Traditional Chinese medicine</subject><subject>Transcriptomics</subject><subject>Yeasts</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQBmALgUQpDLyBJZZ2SGrHiWOPgICCKoFQkdgix7lQV04d4qQoG4_AM_IkBMqExC23fHf69SN0SklIh5m19TqkiZDRHhpRxpOAUfa8j0ZEchKkMY0O0ZH3a0Joyng8Qqu5qq1r-xo-3z8a8M5uocAvsHEVYOU9VLntsSvxhYXWWKuwbxujWoUny1W3ycMpfgSjV3lYhrh1GGynTaFawBUURpuNsnirbAfH6KBU1sPJ7x6jp-ur5eU8WNzf3F6eLwLNGIkCSCSknHEiBSvKPJc5JJzKouBxzAREMiUl0VTkIlecMF6SWKcyUSySItKsYGM02f2tG_fagW-zyngNQ_INuM5nERcJYTJhZKBnf-jadc2QeFApEZymsaCDmu6Ubpz3DZRZ3ZhKNX1GSfbdeTZ0nv10PtjZzr4ZC_3_MFs-3O0uvgCrW4NA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Jiang, Lan</creator><creator>Lin, Mengfei</creator><creator>Wang, Han</creator><creator>Song, Hui</creator><creator>Zhang, Lin</creator><creator>Huang, Qingyu</creator><creator>Chen, Renrui</creator><creator>Song, Cheng</creator><creator>Li, Guohui</creator><creator>Cao, Yunpeng</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2778-1081</orcidid><orcidid>https://orcid.org/0000-0001-5976-2382</orcidid><orcidid>https://orcid.org/0000-0002-2455-0942</orcidid></search><sort><creationdate>202209</creationdate><title>Haplotype‐resolved genome assembly of Bletilla striata (Thunb.) Reichb.f. to elucidate medicinal value</title><author>Jiang, Lan ; Lin, Mengfei ; Wang, Han ; Song, Hui ; Zhang, Lin ; Huang, Qingyu ; Chen, Renrui ; Song, Cheng ; Li, Guohui ; Cao, Yunpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3302-e59e76360983dfbb9be5619dd64438e2970f0c18b8ba6036f04c795a32982c3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biosynthesis</topic><topic>Bletilla striata</topic><topic>Chromosomes</topic><topic>Conformation</topic><topic>Gene families</topic><topic>Gene silencing</topic><topic>genome</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>haplotype</topic><topic>Haplotypes</topic><topic>Herbal medicine</topic><topic>Karyotypes</topic><topic>Metabolites</topic><topic>MYB transcription factor</topic><topic>polysaccharide</topic><topic>Polysaccharides</topic><topic>Scaffolds</topic><topic>Traditional Chinese medicine</topic><topic>Transcriptomics</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Lan</creatorcontrib><creatorcontrib>Lin, Mengfei</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Song, Hui</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Huang, Qingyu</creatorcontrib><creatorcontrib>Chen, Renrui</creatorcontrib><creatorcontrib>Song, Cheng</creatorcontrib><creatorcontrib>Li, Guohui</creatorcontrib><creatorcontrib>Cao, Yunpeng</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Lan</au><au>Lin, Mengfei</au><au>Wang, Han</au><au>Song, Hui</au><au>Zhang, Lin</au><au>Huang, Qingyu</au><au>Chen, Renrui</au><au>Song, Cheng</au><au>Li, Guohui</au><au>Cao, Yunpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Haplotype‐resolved genome assembly of Bletilla striata (Thunb.) Reichb.f. to elucidate medicinal value</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><date>2022-09</date><risdate>2022</risdate><volume>111</volume><issue>5</issue><spage>1340</spage><epage>1353</epage><pages>1340-1353</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY Bletilla striata, commonly known as baiji, is a species used in traditional Chinese medicine; it is highly regarded for its medicinal applications and therefore has high economic value. Here, we report a high‐quality haplotype‐resolved genome of B. striata, haplotype A (2.37 Gb, with a scaffold N50 of 146.39 Mb and a contig N50 of 1.65 Mb) and haplotype B (2.43 Gb, with a scaffold N50 of 150.22 Mb and a contig N50 of 1.66 Mb), assembled from high‐fidelity (HiFi) reads and chromosome conformation capture (Hi‐C) reads. We find evidence that B. striata has undergone two whole‐genome duplication (WGD) events: an ancient WGD event shared by most monocots and a recent WGD event unique to all orchids. We also reconstructed the ancestral orchid karyotype (AOK) of 18 ancient chromosomes and the evolutionary trajectories of 16 modern B. striata chromosomes. Comparative genomic analysis suggests that the expanded gene families of B. striata might play important roles in secondary metabolite biosynthesis and environmental adaptation. By combining genomic and transcriptomic data, we identified the 10 core members from nine gene families that were probably involved in B. striata polysaccharide (BSP) biosynthesis. Based on virus‐induced gene silencing (VIGS) and yeast two‐hybrid experiments, we present an MYB transcription factor (TF), BsMYB2, that can regulate BSP biosynthesis by directly interacting with eight key BSP‐related genes: sacA1, HK1, scrK1, scrK2, GPI1, manA1, GMPP1 and UGP2_1. Our study will enhance the understanding of orchid evolution and accelerate the molecular‐assisted breeding of B. striata for improving traits of medicinal value. Significance Statement We first report a high‐quality haplotype‐resolved genome of B. striata, Haplotype‐A (2.37 Gb with a scaffold N50 of 146.39 Mb) and Haplotype‐B (2.43 Gb with a scaffold N50 of 150.22 Mb), and exhibit a MYB transcription factor (TF), BsMYB2, which can regulate BSPs biosynthesis by directly interacting with eight key BSPs‐related gene. This study will enhance the understanding of orchid evolution and accelerate molecular‐assisted breeding of B. striata for improving medicinal‐value traits.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tpj.15892</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2778-1081</orcidid><orcidid>https://orcid.org/0000-0001-5976-2382</orcidid><orcidid>https://orcid.org/0000-0002-2455-0942</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2022-09, Vol.111 (5), p.1340-1353
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_2685039530
source IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Biosynthesis
Bletilla striata
Chromosomes
Conformation
Gene families
Gene silencing
genome
Genomes
Genomic analysis
haplotype
Haplotypes
Herbal medicine
Karyotypes
Metabolites
MYB transcription factor
polysaccharide
Polysaccharides
Scaffolds
Traditional Chinese medicine
Transcriptomics
Yeasts
title Haplotype‐resolved genome assembly of Bletilla striata (Thunb.) Reichb.f. to elucidate medicinal value
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Haplotype%E2%80%90resolved%20genome%20assembly%20of%20Bletilla%20striata%20(Thunb.)%20Reichb.f.%20to%20elucidate%20medicinal%20value&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Jiang,%20Lan&rft.date=2022-09&rft.volume=111&rft.issue=5&rft.spage=1340&rft.epage=1353&rft.pages=1340-1353&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.15892&rft_dat=%3Cproquest_cross%3E2708617481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708617481&rft_id=info:pmid/&rfr_iscdi=true