Integrating Structural Colors with Additive Manufacturing Using Atomic Layer Deposition

We demonstrate tunable structural color patterns that span the visible spectrum using atomic layer deposition (ALD). Asymmetric metal–dielectric–metal structures were sequentially deposited with nickel, zinc oxide, and a thin copper layer to form an optical cavity. The color response was precisely a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-07, Vol.14 (27), p.31099-31108
Hauptverfasser: Rorem, Benjamin A., Cho, Tae H., Farjam, Nazanin, Lenef, Julia D., Barton, Kira, Dasgupta, Neil P., Guo, L. Jay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31108
container_issue 27
container_start_page 31099
container_title ACS applied materials & interfaces
container_volume 14
creator Rorem, Benjamin A.
Cho, Tae H.
Farjam, Nazanin
Lenef, Julia D.
Barton, Kira
Dasgupta, Neil P.
Guo, L. Jay
description We demonstrate tunable structural color patterns that span the visible spectrum using atomic layer deposition (ALD). Asymmetric metal–dielectric–metal structures were sequentially deposited with nickel, zinc oxide, and a thin copper layer to form an optical cavity. The color response was precisely adjusted by tuning the zinc oxide (ZnO) thickness using ALD, which was consistent with model predictions. Owing to the conformal nature of ALD, this allows for uniform and tunable coloration of non-planar three-dimensional (3D) objects, as exemplified by adding color to 3D-printed parts produced by metal additive manufacturing. Proper choice of inorganic layered structures and materials allows the structural color to be stable at elevated temperatures, in contrast to traditional paints. To print multiple colors on a single sample, polymer inhibitors were patterned in a desired geometry using electrohydrodynamic jet (e-jet) printing, followed by area-selective ALD in the unpassivated regions. The ability to achieve 3D color printing, both at the micro- and macroscales, provides a new pathway to tune the optical and aesthetic properties during additive manufacturing.
doi_str_mv 10.1021/acsami.2c05940
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2685037042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685037042</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-3f0f4090bd955259fa82eb17b9f0d16918dacd5aceb509213e7bb118a3902ff63</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK5ePfcoQuskbdrmuKxfCysedPEY0jRZs7TNmqTK_ntbunjzMjMMzzswD0LXGBIMBN8J6UVrEiKBsgxO0AyzLItLQsnp35xl5-jC-x1AnhKgM_Sx6oLaOhFMt43egutl6J1ooqVtrPPRjwmf0aKuTTDfKnoRXa_FSIz0xo91EWxrZLQWB-Wie7W3fmBtd4nOtGi8ujr2Odo8Prwvn-P169NquVjHIoUixKkGnQGDqmaUEsq0KImqcFExDTXOGS5rIWsqpKooMIJTVVQVxqVIGRCt83SObqa7e2e_euUDb42XqmlEp2zvOclLCmkBGRnQZEKls947pfnemVa4A8fAR4N8MsiPBofA7RQY9nxne9cNn_wH_wLPb3RO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685037042</pqid></control><display><type>article</type><title>Integrating Structural Colors with Additive Manufacturing Using Atomic Layer Deposition</title><source>ACS Publications</source><creator>Rorem, Benjamin A. ; Cho, Tae H. ; Farjam, Nazanin ; Lenef, Julia D. ; Barton, Kira ; Dasgupta, Neil P. ; Guo, L. Jay</creator><creatorcontrib>Rorem, Benjamin A. ; Cho, Tae H. ; Farjam, Nazanin ; Lenef, Julia D. ; Barton, Kira ; Dasgupta, Neil P. ; Guo, L. Jay</creatorcontrib><description>We demonstrate tunable structural color patterns that span the visible spectrum using atomic layer deposition (ALD). Asymmetric metal–dielectric–metal structures were sequentially deposited with nickel, zinc oxide, and a thin copper layer to form an optical cavity. The color response was precisely adjusted by tuning the zinc oxide (ZnO) thickness using ALD, which was consistent with model predictions. Owing to the conformal nature of ALD, this allows for uniform and tunable coloration of non-planar three-dimensional (3D) objects, as exemplified by adding color to 3D-printed parts produced by metal additive manufacturing. Proper choice of inorganic layered structures and materials allows the structural color to be stable at elevated temperatures, in contrast to traditional paints. To print multiple colors on a single sample, polymer inhibitors were patterned in a desired geometry using electrohydrodynamic jet (e-jet) printing, followed by area-selective ALD in the unpassivated regions. The ability to achieve 3D color printing, both at the micro- and macroscales, provides a new pathway to tune the optical and aesthetic properties during additive manufacturing.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c05940</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials &amp; interfaces, 2022-07, Vol.14 (27), p.31099-31108</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-3f0f4090bd955259fa82eb17b9f0d16918dacd5aceb509213e7bb118a3902ff63</citedby><cites>FETCH-LOGICAL-a307t-3f0f4090bd955259fa82eb17b9f0d16918dacd5aceb509213e7bb118a3902ff63</cites><orcidid>0000-0002-0347-6309 ; 0000-0003-0190-5090 ; 0000-0002-5180-4063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c05940$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c05940$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Rorem, Benjamin A.</creatorcontrib><creatorcontrib>Cho, Tae H.</creatorcontrib><creatorcontrib>Farjam, Nazanin</creatorcontrib><creatorcontrib>Lenef, Julia D.</creatorcontrib><creatorcontrib>Barton, Kira</creatorcontrib><creatorcontrib>Dasgupta, Neil P.</creatorcontrib><creatorcontrib>Guo, L. Jay</creatorcontrib><title>Integrating Structural Colors with Additive Manufacturing Using Atomic Layer Deposition</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We demonstrate tunable structural color patterns that span the visible spectrum using atomic layer deposition (ALD). Asymmetric metal–dielectric–metal structures were sequentially deposited with nickel, zinc oxide, and a thin copper layer to form an optical cavity. The color response was precisely adjusted by tuning the zinc oxide (ZnO) thickness using ALD, which was consistent with model predictions. Owing to the conformal nature of ALD, this allows for uniform and tunable coloration of non-planar three-dimensional (3D) objects, as exemplified by adding color to 3D-printed parts produced by metal additive manufacturing. Proper choice of inorganic layered structures and materials allows the structural color to be stable at elevated temperatures, in contrast to traditional paints. To print multiple colors on a single sample, polymer inhibitors were patterned in a desired geometry using electrohydrodynamic jet (e-jet) printing, followed by area-selective ALD in the unpassivated regions. The ability to achieve 3D color printing, both at the micro- and macroscales, provides a new pathway to tune the optical and aesthetic properties during additive manufacturing.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK5ePfcoQuskbdrmuKxfCysedPEY0jRZs7TNmqTK_ntbunjzMjMMzzswD0LXGBIMBN8J6UVrEiKBsgxO0AyzLItLQsnp35xl5-jC-x1AnhKgM_Sx6oLaOhFMt43egutl6J1ooqVtrPPRjwmf0aKuTTDfKnoRXa_FSIz0xo91EWxrZLQWB-Wie7W3fmBtd4nOtGi8ujr2Odo8Prwvn-P169NquVjHIoUixKkGnQGDqmaUEsq0KImqcFExDTXOGS5rIWsqpKooMIJTVVQVxqVIGRCt83SObqa7e2e_euUDb42XqmlEp2zvOclLCmkBGRnQZEKls947pfnemVa4A8fAR4N8MsiPBofA7RQY9nxne9cNn_wH_wLPb3RO</recordid><startdate>20220713</startdate><enddate>20220713</enddate><creator>Rorem, Benjamin A.</creator><creator>Cho, Tae H.</creator><creator>Farjam, Nazanin</creator><creator>Lenef, Julia D.</creator><creator>Barton, Kira</creator><creator>Dasgupta, Neil P.</creator><creator>Guo, L. Jay</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0347-6309</orcidid><orcidid>https://orcid.org/0000-0003-0190-5090</orcidid><orcidid>https://orcid.org/0000-0002-5180-4063</orcidid></search><sort><creationdate>20220713</creationdate><title>Integrating Structural Colors with Additive Manufacturing Using Atomic Layer Deposition</title><author>Rorem, Benjamin A. ; Cho, Tae H. ; Farjam, Nazanin ; Lenef, Julia D. ; Barton, Kira ; Dasgupta, Neil P. ; Guo, L. Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-3f0f4090bd955259fa82eb17b9f0d16918dacd5aceb509213e7bb118a3902ff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rorem, Benjamin A.</creatorcontrib><creatorcontrib>Cho, Tae H.</creatorcontrib><creatorcontrib>Farjam, Nazanin</creatorcontrib><creatorcontrib>Lenef, Julia D.</creatorcontrib><creatorcontrib>Barton, Kira</creatorcontrib><creatorcontrib>Dasgupta, Neil P.</creatorcontrib><creatorcontrib>Guo, L. Jay</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rorem, Benjamin A.</au><au>Cho, Tae H.</au><au>Farjam, Nazanin</au><au>Lenef, Julia D.</au><au>Barton, Kira</au><au>Dasgupta, Neil P.</au><au>Guo, L. Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Structural Colors with Additive Manufacturing Using Atomic Layer Deposition</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-07-13</date><risdate>2022</risdate><volume>14</volume><issue>27</issue><spage>31099</spage><epage>31108</epage><pages>31099-31108</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We demonstrate tunable structural color patterns that span the visible spectrum using atomic layer deposition (ALD). Asymmetric metal–dielectric–metal structures were sequentially deposited with nickel, zinc oxide, and a thin copper layer to form an optical cavity. The color response was precisely adjusted by tuning the zinc oxide (ZnO) thickness using ALD, which was consistent with model predictions. Owing to the conformal nature of ALD, this allows for uniform and tunable coloration of non-planar three-dimensional (3D) objects, as exemplified by adding color to 3D-printed parts produced by metal additive manufacturing. Proper choice of inorganic layered structures and materials allows the structural color to be stable at elevated temperatures, in contrast to traditional paints. To print multiple colors on a single sample, polymer inhibitors were patterned in a desired geometry using electrohydrodynamic jet (e-jet) printing, followed by area-selective ALD in the unpassivated regions. The ability to achieve 3D color printing, both at the micro- and macroscales, provides a new pathway to tune the optical and aesthetic properties during additive manufacturing.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c05940</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0347-6309</orcidid><orcidid>https://orcid.org/0000-0003-0190-5090</orcidid><orcidid>https://orcid.org/0000-0002-5180-4063</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-07, Vol.14 (27), p.31099-31108
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2685037042
source ACS Publications
subjects Functional Nanostructured Materials (including low-D carbon)
title Integrating Structural Colors with Additive Manufacturing Using Atomic Layer Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Structural%20Colors%20with%20Additive%20Manufacturing%20Using%20Atomic%20Layer%20Deposition&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Rorem,%20Benjamin%20A.&rft.date=2022-07-13&rft.volume=14&rft.issue=27&rft.spage=31099&rft.epage=31108&rft.pages=31099-31108&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c05940&rft_dat=%3Cproquest_cross%3E2685037042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685037042&rft_id=info:pmid/&rfr_iscdi=true