Modeling the Structure of Human tRNA-Guanine Transglycosylase in Complex with 7-Methylguanine and Revealing the Factors that Determine the Enzyme Interaction with Inhibitors

tRNA-guanine transglycosylase, an enzyme catalyzing replacement of guanine with queuine in human tRNA and participating in the translation mechanism, is involved in the development of cancer. However, information on the small-molecule inhibitors that can suppress activity of this enzyme is very limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Moscow) 2022-05, Vol.87 (5), p.443-449
Hauptverfasser: Pushkarev, Sergey V., Vinnik, Valeriia A., Shapovalova, Irina V., Švedas, Vytas K., Nilov, Dmitry K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449
container_issue 5
container_start_page 443
container_title Biochemistry (Moscow)
container_volume 87
creator Pushkarev, Sergey V.
Vinnik, Valeriia A.
Shapovalova, Irina V.
Švedas, Vytas K.
Nilov, Dmitry K.
description tRNA-guanine transglycosylase, an enzyme catalyzing replacement of guanine with queuine in human tRNA and participating in the translation mechanism, is involved in the development of cancer. However, information on the small-molecule inhibitors that can suppress activity of this enzyme is very limited. Molecular dynamics simulations were used to determine the amino acid residues that provide efficient binding of inhibitors in the active site of tRNA-guanine transglycosylase. It was demonstrated using 7-methylguanine molecule as a probe that the ability of the inhibitor to adopt a charged state in the environment of hydrogen bond acceptors Asp105 and Asp159 plays a key role in complex formation. Formation of the hydrogen bonds and hydrophobic contacts with Gln202, Gly229, Phe109, and Met259 residues are also important. It has been predicted that introduction of the substituents would have a different effect on the ability to inhibit tRNA-guanine transglycosylase, as well as the DNA repair protein poly(ADP-ribose) polymerase 1, which can contribute to the development of more efficient and selective compounds.
doi_str_mv 10.1134/S0006297922050054
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2685035986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A703705182</galeid><sourcerecordid>A703705182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-1d108984c9f5495da4b3dfbdead6936f62cbbf8cfbbef587e28cd595e325d61c3</originalsourceid><addsrcrecordid>eNp1kktv1DAQgCMEEkvhB3CzxIVLih9x4hxXSx8rtSC15Rw59jjrKrEX2wGW_8R_xNFWVLzkg-2Z7xuPpSmK1wSfEsKqd7cY45q2TUsp5hjz6kmxIjUWJcMVflqslnS55J8XL2K8z1eKW7Yqflx7DaN1A0o7QLcpzCrNAZA36HKepEPp5sO6vJilsw7QXZAuDuNB-XgYZQRkHdr4aT_CN_TVph1qymtIu8M4PAjSaXQDX0D-euJcquRDzGeZ0HtIEKYFXFJn7vthArR1OZgp692x6NbtbG8X62XxzMgxwquH_aT4dH52t7ksrz5ebDfrq1JVvE0l0QSLVlSqNbxquZZVz7TpNUhdt6w2NVV9b4QyfQ-GiwaoUJq3HBjluiaKnRRvj3X3wX-eIaZuslHBOEoHfo4drQXHjLeizuibP9B7PweXu8tUzQQRFSWP1CBH6KwzPuUvLkW7dYNZgzkRNFOn_6Dy0jBZ5R0Ym-O_CeQoqOBjDGC6fbCTDIeO4G6Zi-6vucgOPToxs26A8Njw_6Wf7bK7nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663818421</pqid></control><display><type>article</type><title>Modeling the Structure of Human tRNA-Guanine Transglycosylase in Complex with 7-Methylguanine and Revealing the Factors that Determine the Enzyme Interaction with Inhibitors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pushkarev, Sergey V. ; Vinnik, Valeriia A. ; Shapovalova, Irina V. ; Švedas, Vytas K. ; Nilov, Dmitry K.</creator><creatorcontrib>Pushkarev, Sergey V. ; Vinnik, Valeriia A. ; Shapovalova, Irina V. ; Švedas, Vytas K. ; Nilov, Dmitry K.</creatorcontrib><description>tRNA-guanine transglycosylase, an enzyme catalyzing replacement of guanine with queuine in human tRNA and participating in the translation mechanism, is involved in the development of cancer. However, information on the small-molecule inhibitors that can suppress activity of this enzyme is very limited. Molecular dynamics simulations were used to determine the amino acid residues that provide efficient binding of inhibitors in the active site of tRNA-guanine transglycosylase. It was demonstrated using 7-methylguanine molecule as a probe that the ability of the inhibitor to adopt a charged state in the environment of hydrogen bond acceptors Asp105 and Asp159 plays a key role in complex formation. Formation of the hydrogen bonds and hydrophobic contacts with Gln202, Gly229, Phe109, and Met259 residues are also important. It has been predicted that introduction of the substituents would have a different effect on the ability to inhibit tRNA-guanine transglycosylase, as well as the DNA repair protein poly(ADP-ribose) polymerase 1, which can contribute to the development of more efficient and selective compounds.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297922050054</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adenosine diphosphate ; Amino acids ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Complex formation ; DNA repair ; Enzymes ; Guanine ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Hydrophobicity ; Inhibitors ; Life Sciences ; Methylguanine ; Microbiology ; Molecular dynamics ; Poly(ADP-ribose) ; Poly(ADP-ribose) polymerase ; Residues ; Ribose ; Transfer RNA ; tRNA ; tRNA-guanine transglycosylase</subject><ispartof>Biochemistry (Moscow), 2022-05, Vol.87 (5), p.443-449</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-1d108984c9f5495da4b3dfbdead6936f62cbbf8cfbbef587e28cd595e325d61c3</citedby><cites>FETCH-LOGICAL-c459t-1d108984c9f5495da4b3dfbdead6936f62cbbf8cfbbef587e28cd595e325d61c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297922050054$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297922050054$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Pushkarev, Sergey V.</creatorcontrib><creatorcontrib>Vinnik, Valeriia A.</creatorcontrib><creatorcontrib>Shapovalova, Irina V.</creatorcontrib><creatorcontrib>Švedas, Vytas K.</creatorcontrib><creatorcontrib>Nilov, Dmitry K.</creatorcontrib><title>Modeling the Structure of Human tRNA-Guanine Transglycosylase in Complex with 7-Methylguanine and Revealing the Factors that Determine the Enzyme Interaction with Inhibitors</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><description>tRNA-guanine transglycosylase, an enzyme catalyzing replacement of guanine with queuine in human tRNA and participating in the translation mechanism, is involved in the development of cancer. However, information on the small-molecule inhibitors that can suppress activity of this enzyme is very limited. Molecular dynamics simulations were used to determine the amino acid residues that provide efficient binding of inhibitors in the active site of tRNA-guanine transglycosylase. It was demonstrated using 7-methylguanine molecule as a probe that the ability of the inhibitor to adopt a charged state in the environment of hydrogen bond acceptors Asp105 and Asp159 plays a key role in complex formation. Formation of the hydrogen bonds and hydrophobic contacts with Gln202, Gly229, Phe109, and Met259 residues are also important. It has been predicted that introduction of the substituents would have a different effect on the ability to inhibit tRNA-guanine transglycosylase, as well as the DNA repair protein poly(ADP-ribose) polymerase 1, which can contribute to the development of more efficient and selective compounds.</description><subject>Adenosine diphosphate</subject><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Complex formation</subject><subject>DNA repair</subject><subject>Enzymes</subject><subject>Guanine</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophobicity</subject><subject>Inhibitors</subject><subject>Life Sciences</subject><subject>Methylguanine</subject><subject>Microbiology</subject><subject>Molecular dynamics</subject><subject>Poly(ADP-ribose)</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Residues</subject><subject>Ribose</subject><subject>Transfer RNA</subject><subject>tRNA</subject><subject>tRNA-guanine transglycosylase</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kktv1DAQgCMEEkvhB3CzxIVLih9x4hxXSx8rtSC15Rw59jjrKrEX2wGW_8R_xNFWVLzkg-2Z7xuPpSmK1wSfEsKqd7cY45q2TUsp5hjz6kmxIjUWJcMVflqslnS55J8XL2K8z1eKW7Yqflx7DaN1A0o7QLcpzCrNAZA36HKepEPp5sO6vJilsw7QXZAuDuNB-XgYZQRkHdr4aT_CN_TVph1qymtIu8M4PAjSaXQDX0D-euJcquRDzGeZ0HtIEKYFXFJn7vthArR1OZgp692x6NbtbG8X62XxzMgxwquH_aT4dH52t7ksrz5ebDfrq1JVvE0l0QSLVlSqNbxquZZVz7TpNUhdt6w2NVV9b4QyfQ-GiwaoUJq3HBjluiaKnRRvj3X3wX-eIaZuslHBOEoHfo4drQXHjLeizuibP9B7PweXu8tUzQQRFSWP1CBH6KwzPuUvLkW7dYNZgzkRNFOn_6Dy0jBZ5R0Ym-O_CeQoqOBjDGC6fbCTDIeO4G6Zi-6vucgOPToxs26A8Njw_6Wf7bK7nQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Pushkarev, Sergey V.</creator><creator>Vinnik, Valeriia A.</creator><creator>Shapovalova, Irina V.</creator><creator>Švedas, Vytas K.</creator><creator>Nilov, Dmitry K.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20220501</creationdate><title>Modeling the Structure of Human tRNA-Guanine Transglycosylase in Complex with 7-Methylguanine and Revealing the Factors that Determine the Enzyme Interaction with Inhibitors</title><author>Pushkarev, Sergey V. ; Vinnik, Valeriia A. ; Shapovalova, Irina V. ; Švedas, Vytas K. ; Nilov, Dmitry K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-1d108984c9f5495da4b3dfbdead6936f62cbbf8cfbbef587e28cd595e325d61c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine diphosphate</topic><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Complex formation</topic><topic>DNA repair</topic><topic>Enzymes</topic><topic>Guanine</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophobicity</topic><topic>Inhibitors</topic><topic>Life Sciences</topic><topic>Methylguanine</topic><topic>Microbiology</topic><topic>Molecular dynamics</topic><topic>Poly(ADP-ribose)</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Residues</topic><topic>Ribose</topic><topic>Transfer RNA</topic><topic>tRNA</topic><topic>tRNA-guanine transglycosylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pushkarev, Sergey V.</creatorcontrib><creatorcontrib>Vinnik, Valeriia A.</creatorcontrib><creatorcontrib>Shapovalova, Irina V.</creatorcontrib><creatorcontrib>Švedas, Vytas K.</creatorcontrib><creatorcontrib>Nilov, Dmitry K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pushkarev, Sergey V.</au><au>Vinnik, Valeriia A.</au><au>Shapovalova, Irina V.</au><au>Švedas, Vytas K.</au><au>Nilov, Dmitry K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Structure of Human tRNA-Guanine Transglycosylase in Complex with 7-Methylguanine and Revealing the Factors that Determine the Enzyme Interaction with Inhibitors</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>87</volume><issue>5</issue><spage>443</spage><epage>449</epage><pages>443-449</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>tRNA-guanine transglycosylase, an enzyme catalyzing replacement of guanine with queuine in human tRNA and participating in the translation mechanism, is involved in the development of cancer. However, information on the small-molecule inhibitors that can suppress activity of this enzyme is very limited. Molecular dynamics simulations were used to determine the amino acid residues that provide efficient binding of inhibitors in the active site of tRNA-guanine transglycosylase. It was demonstrated using 7-methylguanine molecule as a probe that the ability of the inhibitor to adopt a charged state in the environment of hydrogen bond acceptors Asp105 and Asp159 plays a key role in complex formation. Formation of the hydrogen bonds and hydrophobic contacts with Gln202, Gly229, Phe109, and Met259 residues are also important. It has been predicted that introduction of the substituents would have a different effect on the ability to inhibit tRNA-guanine transglycosylase, as well as the DNA repair protein poly(ADP-ribose) polymerase 1, which can contribute to the development of more efficient and selective compounds.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0006297922050054</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2979
ispartof Biochemistry (Moscow), 2022-05, Vol.87 (5), p.443-449
issn 0006-2979
1608-3040
language eng
recordid cdi_proquest_miscellaneous_2685035986
source SpringerLink Journals - AutoHoldings
subjects Adenosine diphosphate
Amino acids
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bioorganic Chemistry
Complex formation
DNA repair
Enzymes
Guanine
Hydrogen
Hydrogen bonding
Hydrogen bonds
Hydrophobicity
Inhibitors
Life Sciences
Methylguanine
Microbiology
Molecular dynamics
Poly(ADP-ribose)
Poly(ADP-ribose) polymerase
Residues
Ribose
Transfer RNA
tRNA
tRNA-guanine transglycosylase
title Modeling the Structure of Human tRNA-Guanine Transglycosylase in Complex with 7-Methylguanine and Revealing the Factors that Determine the Enzyme Interaction with Inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Structure%20of%20Human%20tRNA-Guanine%20Transglycosylase%20in%20Complex%20with%207-Methylguanine%20and%20Revealing%20the%20Factors%20that%20Determine%20the%20Enzyme%20Interaction%20with%20Inhibitors&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Pushkarev,%20Sergey%20V.&rft.date=2022-05-01&rft.volume=87&rft.issue=5&rft.spage=443&rft.epage=449&rft.pages=443-449&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297922050054&rft_dat=%3Cgale_proqu%3EA703705182%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663818421&rft_id=info:pmid/&rft_galeid=A703705182&rfr_iscdi=true