Impact of Strain Relaxation on 2D Ruddlesden–Popper Perovskite Solar Cells
Although the photovoltaic performance of perovskite solar cells (PSCs) has reached the commercial standards, the unsatisfactory stability limits their further application. Hydrophobic interface and encapsulation can block the damage of water and oxygen, while the instability induced by intrinsic res...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-09, Vol.61 (36), p.e202208264-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | e202208264 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Cheng, Qian Wang, Boxin Huang, Gaosheng Li, Yanxun Li, Xing Chen, Jieyi Yue, Shengli Li, Kang Zhang, Hong Zhang, Yuan Zhou, Huiqiong |
description | Although the photovoltaic performance of perovskite solar cells (PSCs) has reached the commercial standards, the unsatisfactory stability limits their further application. Hydrophobic interface and encapsulation can block the damage of water and oxygen, while the instability induced by intrinsic residual strain remains inevitable. Here, the residual strain in a two‐dimensional (2D) Ruddlesden–Popper (RP) perovskite film is investigated by X‐ray diffraction and atomic force microscopy. It's found that the spacer cations contribute to the residual strain even though they are not in the inorganic cages. Benefited from strain relaxation, the film quality is improved, leading to suppressed recombination, promoted charge transport and enhanced efficiency. More significantly, the strain‐released devices maintain 86 % of the initial efficiency after being kept in air with 85 % relative humidity (RH) for 1080 h, 82 % under maximum power point (MPP) tracking at 50 °C for 804 h and 86 % after continuous heating at 85 °C for 1080 h.
The residual strain in 2D Ruddlesden–Popper perovskite films is investigated by X‐ray diffraction and atomic force microscopy. Strain relaxation facilitated by the organic spacer cations leads to improved film quality, suppressed recombination, and enhanced device performance under external stress. |
doi_str_mv | 10.1002/anie.202208264 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2685032615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707586663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3504-33952684c75de0223f55e85c880460ed261595d68f9f3251ae8f6e8a2ee5ae633</originalsourceid><addsrcrecordid>eNqFkE9LwzAYxoMoOKdXzwEvXlrzp0nT45hTB0PHpucQ2rfQ2TU1adXd_A5-Qz-JmRMFL0LgzeH3_Hh4EDqlJKaEsAvTVBAzwhhRTCZ7aEAFoxFPU74f_gnnUaoEPURH3q8CrxSRAzSbrluTd9iWeNk5UzV4AbV5NV1lGxweu8SLvihq8AU0H2_vc9u24PAcnH32j1UHeGlr4_AY6tofo4PS1B5Ovu8QPVxN7sc30ezuejoezaKcC5JEnGeCSZXkqSgg9OWlEKBEHholkkDBJBWZKKQqs5IzQQ2oUoIyDEAYkJwP0fnO2zr71IPv9LryeWhgGrC910EuCN9qAnr2B13Z3jWhnWYpSYWS8ksY76jcWe8dlLp11dq4jaZEb8fV23H1z7ghkO0CL1UNm39oPbqdTn6zn3QafLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707586663</pqid></control><display><type>article</type><title>Impact of Strain Relaxation on 2D Ruddlesden–Popper Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cheng, Qian ; Wang, Boxin ; Huang, Gaosheng ; Li, Yanxun ; Li, Xing ; Chen, Jieyi ; Yue, Shengli ; Li, Kang ; Zhang, Hong ; Zhang, Yuan ; Zhou, Huiqiong</creator><creatorcontrib>Cheng, Qian ; Wang, Boxin ; Huang, Gaosheng ; Li, Yanxun ; Li, Xing ; Chen, Jieyi ; Yue, Shengli ; Li, Kang ; Zhang, Hong ; Zhang, Yuan ; Zhou, Huiqiong</creatorcontrib><description>Although the photovoltaic performance of perovskite solar cells (PSCs) has reached the commercial standards, the unsatisfactory stability limits their further application. Hydrophobic interface and encapsulation can block the damage of water and oxygen, while the instability induced by intrinsic residual strain remains inevitable. Here, the residual strain in a two‐dimensional (2D) Ruddlesden–Popper (RP) perovskite film is investigated by X‐ray diffraction and atomic force microscopy. It's found that the spacer cations contribute to the residual strain even though they are not in the inorganic cages. Benefited from strain relaxation, the film quality is improved, leading to suppressed recombination, promoted charge transport and enhanced efficiency. More significantly, the strain‐released devices maintain 86 % of the initial efficiency after being kept in air with 85 % relative humidity (RH) for 1080 h, 82 % under maximum power point (MPP) tracking at 50 °C for 804 h and 86 % after continuous heating at 85 °C for 1080 h.
The residual strain in 2D Ruddlesden–Popper perovskite films is investigated by X‐ray diffraction and atomic force microscopy. Strain relaxation facilitated by the organic spacer cations leads to improved film quality, suppressed recombination, and enhanced device performance under external stress.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202208264</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopy ; Cations ; Charge efficiency ; Charge transport ; Hydrophobicity ; Interface stability ; Maximum power ; Perovskites ; Photovoltaic cells ; Photovoltaics ; Recombination ; Relative humidity ; Ruddlesden–Popper ; Solar Cells ; Stability ; Strain Relaxation ; Water damage</subject><ispartof>Angewandte Chemie International Edition, 2022-09, Vol.61 (36), p.e202208264-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3504-33952684c75de0223f55e85c880460ed261595d68f9f3251ae8f6e8a2ee5ae633</citedby><cites>FETCH-LOGICAL-c3504-33952684c75de0223f55e85c880460ed261595d68f9f3251ae8f6e8a2ee5ae633</cites><orcidid>0000-0003-2124-6563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202208264$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202208264$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Cheng, Qian</creatorcontrib><creatorcontrib>Wang, Boxin</creatorcontrib><creatorcontrib>Huang, Gaosheng</creatorcontrib><creatorcontrib>Li, Yanxun</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Chen, Jieyi</creatorcontrib><creatorcontrib>Yue, Shengli</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Zhou, Huiqiong</creatorcontrib><title>Impact of Strain Relaxation on 2D Ruddlesden–Popper Perovskite Solar Cells</title><title>Angewandte Chemie International Edition</title><description>Although the photovoltaic performance of perovskite solar cells (PSCs) has reached the commercial standards, the unsatisfactory stability limits their further application. Hydrophobic interface and encapsulation can block the damage of water and oxygen, while the instability induced by intrinsic residual strain remains inevitable. Here, the residual strain in a two‐dimensional (2D) Ruddlesden–Popper (RP) perovskite film is investigated by X‐ray diffraction and atomic force microscopy. It's found that the spacer cations contribute to the residual strain even though they are not in the inorganic cages. Benefited from strain relaxation, the film quality is improved, leading to suppressed recombination, promoted charge transport and enhanced efficiency. More significantly, the strain‐released devices maintain 86 % of the initial efficiency after being kept in air with 85 % relative humidity (RH) for 1080 h, 82 % under maximum power point (MPP) tracking at 50 °C for 804 h and 86 % after continuous heating at 85 °C for 1080 h.
The residual strain in 2D Ruddlesden–Popper perovskite films is investigated by X‐ray diffraction and atomic force microscopy. Strain relaxation facilitated by the organic spacer cations leads to improved film quality, suppressed recombination, and enhanced device performance under external stress.</description><subject>Atomic force microscopy</subject><subject>Cations</subject><subject>Charge efficiency</subject><subject>Charge transport</subject><subject>Hydrophobicity</subject><subject>Interface stability</subject><subject>Maximum power</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Recombination</subject><subject>Relative humidity</subject><subject>Ruddlesden–Popper</subject><subject>Solar Cells</subject><subject>Stability</subject><subject>Strain Relaxation</subject><subject>Water damage</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LwzAYxoMoOKdXzwEvXlrzp0nT45hTB0PHpucQ2rfQ2TU1adXd_A5-Qz-JmRMFL0LgzeH3_Hh4EDqlJKaEsAvTVBAzwhhRTCZ7aEAFoxFPU74f_gnnUaoEPURH3q8CrxSRAzSbrluTd9iWeNk5UzV4AbV5NV1lGxweu8SLvihq8AU0H2_vc9u24PAcnH32j1UHeGlr4_AY6tofo4PS1B5Ovu8QPVxN7sc30ezuejoezaKcC5JEnGeCSZXkqSgg9OWlEKBEHholkkDBJBWZKKQqs5IzQQ2oUoIyDEAYkJwP0fnO2zr71IPv9LryeWhgGrC910EuCN9qAnr2B13Z3jWhnWYpSYWS8ksY76jcWe8dlLp11dq4jaZEb8fV23H1z7ghkO0CL1UNm39oPbqdTn6zn3QafLc</recordid><startdate>20220905</startdate><enddate>20220905</enddate><creator>Cheng, Qian</creator><creator>Wang, Boxin</creator><creator>Huang, Gaosheng</creator><creator>Li, Yanxun</creator><creator>Li, Xing</creator><creator>Chen, Jieyi</creator><creator>Yue, Shengli</creator><creator>Li, Kang</creator><creator>Zhang, Hong</creator><creator>Zhang, Yuan</creator><creator>Zhou, Huiqiong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2124-6563</orcidid></search><sort><creationdate>20220905</creationdate><title>Impact of Strain Relaxation on 2D Ruddlesden–Popper Perovskite Solar Cells</title><author>Cheng, Qian ; Wang, Boxin ; Huang, Gaosheng ; Li, Yanxun ; Li, Xing ; Chen, Jieyi ; Yue, Shengli ; Li, Kang ; Zhang, Hong ; Zhang, Yuan ; Zhou, Huiqiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3504-33952684c75de0223f55e85c880460ed261595d68f9f3251ae8f6e8a2ee5ae633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic force microscopy</topic><topic>Cations</topic><topic>Charge efficiency</topic><topic>Charge transport</topic><topic>Hydrophobicity</topic><topic>Interface stability</topic><topic>Maximum power</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Recombination</topic><topic>Relative humidity</topic><topic>Ruddlesden–Popper</topic><topic>Solar Cells</topic><topic>Stability</topic><topic>Strain Relaxation</topic><topic>Water damage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Qian</creatorcontrib><creatorcontrib>Wang, Boxin</creatorcontrib><creatorcontrib>Huang, Gaosheng</creatorcontrib><creatorcontrib>Li, Yanxun</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Chen, Jieyi</creatorcontrib><creatorcontrib>Yue, Shengli</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Zhou, Huiqiong</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Qian</au><au>Wang, Boxin</au><au>Huang, Gaosheng</au><au>Li, Yanxun</au><au>Li, Xing</au><au>Chen, Jieyi</au><au>Yue, Shengli</au><au>Li, Kang</au><au>Zhang, Hong</au><au>Zhang, Yuan</au><au>Zhou, Huiqiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Strain Relaxation on 2D Ruddlesden–Popper Perovskite Solar Cells</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2022-09-05</date><risdate>2022</risdate><volume>61</volume><issue>36</issue><spage>e202208264</spage><epage>n/a</epage><pages>e202208264-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Although the photovoltaic performance of perovskite solar cells (PSCs) has reached the commercial standards, the unsatisfactory stability limits their further application. Hydrophobic interface and encapsulation can block the damage of water and oxygen, while the instability induced by intrinsic residual strain remains inevitable. Here, the residual strain in a two‐dimensional (2D) Ruddlesden–Popper (RP) perovskite film is investigated by X‐ray diffraction and atomic force microscopy. It's found that the spacer cations contribute to the residual strain even though they are not in the inorganic cages. Benefited from strain relaxation, the film quality is improved, leading to suppressed recombination, promoted charge transport and enhanced efficiency. More significantly, the strain‐released devices maintain 86 % of the initial efficiency after being kept in air with 85 % relative humidity (RH) for 1080 h, 82 % under maximum power point (MPP) tracking at 50 °C for 804 h and 86 % after continuous heating at 85 °C for 1080 h.
The residual strain in 2D Ruddlesden–Popper perovskite films is investigated by X‐ray diffraction and atomic force microscopy. Strain relaxation facilitated by the organic spacer cations leads to improved film quality, suppressed recombination, and enhanced device performance under external stress.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202208264</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2124-6563</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-09, Vol.61 (36), p.e202208264-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2685032615 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Atomic force microscopy Cations Charge efficiency Charge transport Hydrophobicity Interface stability Maximum power Perovskites Photovoltaic cells Photovoltaics Recombination Relative humidity Ruddlesden–Popper Solar Cells Stability Strain Relaxation Water damage |
title | Impact of Strain Relaxation on 2D Ruddlesden–Popper Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Strain%20Relaxation%20on%202D%20Ruddlesden%E2%80%93Popper%20Perovskite%20Solar%20Cells&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Cheng,%20Qian&rft.date=2022-09-05&rft.volume=61&rft.issue=36&rft.spage=e202208264&rft.epage=n/a&rft.pages=e202208264-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202208264&rft_dat=%3Cproquest_cross%3E2707586663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707586663&rft_id=info:pmid/&rfr_iscdi=true |