Automatic tool state identification in a metal turning operation using MLP neural networks and multivariate process parameters
This paper describes results of the application of feed-forward Multi-Layer Perceptron (MLP) neural networks for cutting tool state identification in a metal turning operation. Test cuts were conducted using P25 carbide inserts with and without wear (i.e. nominally sharp) on EN24 alloy steel. The ac...
Gespeichert in:
Veröffentlicht in: | International journal of machine tools & manufacture 1998-04, Vol.38 (4), p.343-352 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | 4 |
container_start_page | 343 |
container_title | International journal of machine tools & manufacture |
container_volume | 38 |
creator | Dimla, Dimla E Lister, Paul M Leighton, Nigel J |
description | This paper describes results of the application of feed-forward Multi-Layer Perceptron (MLP) neural networks for cutting tool state identification in a metal turning operation. Test cuts were conducted using P25 carbide inserts with and without wear (i.e. nominally sharp) on EN24 alloy steel. The acquired data were used to train, cross-validate and test the generalisation capabilities of two MLP configurations. Both networks had exactly the same input and output nodes but differing number of nodes in a single middle layer. Training was achieved via back-propagation of error enhanced by the addition of a momentum term and adaptive learning rate. Different error goal targets during training of the MLP were used, and the validation results of the model investigation analysed and presented. Obtained results for successful classification of the tool state with respect to only two classes (worn or sharp) were between 83 and 96%. |
doi_str_mv | 10.1016/S0890-6955(97)00069-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26845395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890695597000692</els_id><sourcerecordid>26845395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-11ef6fbd2a985ce7ac7ef2bda6f1448a46bacbcd5aca495ddc31aa12df0f42b3</originalsourceid><addsrcrecordid>eNqFkEFv1TAMxyMEEo_BR0DKASE4FJK0SdsTmqbBJj20Sds9chMHBdrkkaRDXPbZSfemXTnZln_-2_4T8pazT5xx9fmGDSNr1Cjlh7H_yBhTYyOekR0f-prwnj0nuyfkJXmV888K8aHlO3J_upa4QPGGlhhnmgsUpN5iKN55UxsxUB8o0AULzLSsKfjwg8YDpmNzzVv9fX9NA66pIgHLn5h-ZQrB0mWdi7-D5DfZQ4oGc6YHSFDlMOXX5IWDOeObx3hCbr-e355dNPurb5dnp_vGtKovDefolJusgHGQBnswPToxWVCOd90AnZrATMZKMNCN0lrTcgAurGOuE1N7Qt4fZesFv1fMRS8-G5xnCBjXrIUaOtmOsoLyCJoUc07o9CH5BdJfzZnezNYPZuvNST32-sFsLercu8cFkA3MLkEwPj8NC6Fk227YlyOG9dc7j0ln4zEYtD6hKdpG_59F_wCYiJiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26845395</pqid></control><display><type>article</type><title>Automatic tool state identification in a metal turning operation using MLP neural networks and multivariate process parameters</title><source>Elsevier ScienceDirect Journals</source><creator>Dimla, Dimla E ; Lister, Paul M ; Leighton, Nigel J</creator><creatorcontrib>Dimla, Dimla E ; Lister, Paul M ; Leighton, Nigel J</creatorcontrib><description>This paper describes results of the application of feed-forward Multi-Layer Perceptron (MLP) neural networks for cutting tool state identification in a metal turning operation. Test cuts were conducted using P25 carbide inserts with and without wear (i.e. nominally sharp) on EN24 alloy steel. The acquired data were used to train, cross-validate and test the generalisation capabilities of two MLP configurations. Both networks had exactly the same input and output nodes but differing number of nodes in a single middle layer. Training was achieved via back-propagation of error enhanced by the addition of a momentum term and adaptive learning rate. Different error goal targets during training of the MLP were used, and the validation results of the model investigation analysed and presented. Obtained results for successful classification of the tool state with respect to only two classes (worn or sharp) were between 83 and 96%.</description><identifier>ISSN: 0890-6955</identifier><identifier>EISSN: 1879-2170</identifier><identifier>DOI: 10.1016/S0890-6955(97)00069-2</identifier><identifier>CODEN: IMTME3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Cutting ; Exact sciences and technology ; Industrial metrology. Testing ; Machining. Machinability ; Mechanical engineering. Machine design ; Metals. Metallurgy ; Production techniques</subject><ispartof>International journal of machine tools & manufacture, 1998-04, Vol.38 (4), p.343-352</ispartof><rights>1998 Elsevier Science Ltd</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-11ef6fbd2a985ce7ac7ef2bda6f1448a46bacbcd5aca495ddc31aa12df0f42b3</citedby><cites>FETCH-LOGICAL-c367t-11ef6fbd2a985ce7ac7ef2bda6f1448a46bacbcd5aca495ddc31aa12df0f42b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0890695597000692$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2265332$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimla, Dimla E</creatorcontrib><creatorcontrib>Lister, Paul M</creatorcontrib><creatorcontrib>Leighton, Nigel J</creatorcontrib><title>Automatic tool state identification in a metal turning operation using MLP neural networks and multivariate process parameters</title><title>International journal of machine tools & manufacture</title><description>This paper describes results of the application of feed-forward Multi-Layer Perceptron (MLP) neural networks for cutting tool state identification in a metal turning operation. Test cuts were conducted using P25 carbide inserts with and without wear (i.e. nominally sharp) on EN24 alloy steel. The acquired data were used to train, cross-validate and test the generalisation capabilities of two MLP configurations. Both networks had exactly the same input and output nodes but differing number of nodes in a single middle layer. Training was achieved via back-propagation of error enhanced by the addition of a momentum term and adaptive learning rate. Different error goal targets during training of the MLP were used, and the validation results of the model investigation analysed and presented. Obtained results for successful classification of the tool state with respect to only two classes (worn or sharp) were between 83 and 96%.</description><subject>Applied sciences</subject><subject>Cutting</subject><subject>Exact sciences and technology</subject><subject>Industrial metrology. Testing</subject><subject>Machining. Machinability</subject><subject>Mechanical engineering. Machine design</subject><subject>Metals. Metallurgy</subject><subject>Production techniques</subject><issn>0890-6955</issn><issn>1879-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1TAMxyMEEo_BR0DKASE4FJK0SdsTmqbBJj20Sds9chMHBdrkkaRDXPbZSfemXTnZln_-2_4T8pazT5xx9fmGDSNr1Cjlh7H_yBhTYyOekR0f-prwnj0nuyfkJXmV888K8aHlO3J_upa4QPGGlhhnmgsUpN5iKN55UxsxUB8o0AULzLSsKfjwg8YDpmNzzVv9fX9NA66pIgHLn5h-ZQrB0mWdi7-D5DfZQ4oGc6YHSFDlMOXX5IWDOeObx3hCbr-e355dNPurb5dnp_vGtKovDefolJusgHGQBnswPToxWVCOd90AnZrATMZKMNCN0lrTcgAurGOuE1N7Qt4fZesFv1fMRS8-G5xnCBjXrIUaOtmOsoLyCJoUc07o9CH5BdJfzZnezNYPZuvNST32-sFsLercu8cFkA3MLkEwPj8NC6Fk227YlyOG9dc7j0ln4zEYtD6hKdpG_59F_wCYiJiU</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Dimla, Dimla E</creator><creator>Lister, Paul M</creator><creator>Leighton, Nigel J</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19980401</creationdate><title>Automatic tool state identification in a metal turning operation using MLP neural networks and multivariate process parameters</title><author>Dimla, Dimla E ; Lister, Paul M ; Leighton, Nigel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-11ef6fbd2a985ce7ac7ef2bda6f1448a46bacbcd5aca495ddc31aa12df0f42b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Cutting</topic><topic>Exact sciences and technology</topic><topic>Industrial metrology. Testing</topic><topic>Machining. Machinability</topic><topic>Mechanical engineering. Machine design</topic><topic>Metals. Metallurgy</topic><topic>Production techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimla, Dimla E</creatorcontrib><creatorcontrib>Lister, Paul M</creatorcontrib><creatorcontrib>Leighton, Nigel J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of machine tools & manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimla, Dimla E</au><au>Lister, Paul M</au><au>Leighton, Nigel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic tool state identification in a metal turning operation using MLP neural networks and multivariate process parameters</atitle><jtitle>International journal of machine tools & manufacture</jtitle><date>1998-04-01</date><risdate>1998</risdate><volume>38</volume><issue>4</issue><spage>343</spage><epage>352</epage><pages>343-352</pages><issn>0890-6955</issn><eissn>1879-2170</eissn><coden>IMTME3</coden><abstract>This paper describes results of the application of feed-forward Multi-Layer Perceptron (MLP) neural networks for cutting tool state identification in a metal turning operation. Test cuts were conducted using P25 carbide inserts with and without wear (i.e. nominally sharp) on EN24 alloy steel. The acquired data were used to train, cross-validate and test the generalisation capabilities of two MLP configurations. Both networks had exactly the same input and output nodes but differing number of nodes in a single middle layer. Training was achieved via back-propagation of error enhanced by the addition of a momentum term and adaptive learning rate. Different error goal targets during training of the MLP were used, and the validation results of the model investigation analysed and presented. Obtained results for successful classification of the tool state with respect to only two classes (worn or sharp) were between 83 and 96%.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0890-6955(97)00069-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-6955 |
ispartof | International journal of machine tools & manufacture, 1998-04, Vol.38 (4), p.343-352 |
issn | 0890-6955 1879-2170 |
language | eng |
recordid | cdi_proquest_miscellaneous_26845395 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Cutting Exact sciences and technology Industrial metrology. Testing Machining. Machinability Mechanical engineering. Machine design Metals. Metallurgy Production techniques |
title | Automatic tool state identification in a metal turning operation using MLP neural networks and multivariate process parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20tool%20state%20identification%20in%20a%20metal%20turning%20operation%20using%20MLP%20neural%20networks%20and%20multivariate%20process%20parameters&rft.jtitle=International%20journal%20of%20machine%20tools%20&%20manufacture&rft.au=Dimla,%20Dimla%20E&rft.date=1998-04-01&rft.volume=38&rft.issue=4&rft.spage=343&rft.epage=352&rft.pages=343-352&rft.issn=0890-6955&rft.eissn=1879-2170&rft.coden=IMTME3&rft_id=info:doi/10.1016/S0890-6955(97)00069-2&rft_dat=%3Cproquest_cross%3E26845395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26845395&rft_id=info:pmid/&rft_els_id=S0890695597000692&rfr_iscdi=true |