Uniqueness and self similarity of size distributions in grain growth and coarsening

The late stage statistical self-similarity or scaling observed in normal grain growth and coarsening are derived from a model for their evolution using a Fokker–Planck equation obtained from stochastic considerations. Using a suitably generalized H-theorem, it is shown that there is indeed a unique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2001-06, Vol.49 (10), p.1805-1811
Hauptverfasser: Pande, C.S., Rajagopal, A.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1811
container_issue 10
container_start_page 1805
container_title Acta materialia
container_volume 49
creator Pande, C.S.
Rajagopal, A.K.
description The late stage statistical self-similarity or scaling observed in normal grain growth and coarsening are derived from a model for their evolution using a Fokker–Planck equation obtained from stochastic considerations. Using a suitably generalized H-theorem, it is shown that there is indeed a unique state (self-similar state) evolving from an arbitrary initial state. The time dependence of the appropriate average sizes in normal grain growth, bubble growth, and coarsening are deduced from this model. Multiple self-similar states in some previous models based on mean field treatment do not appear in the present analysis.
doi_str_mv 10.1016/S1359-6454(01)00080-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26843255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645401000805</els_id><sourcerecordid>26843255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-9739bb201a79fada1f28064ecde5f77b77fe4487269d68d3582ac5317a5284db3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYso-PwJQkEQXVTzTroSEV8guBhnHdLkViOdVHM7yvjr7cyoWzf3Ad-5h3uK4pCSM0qoOp9QLutKCSlOCD0lhBhSyY1ihxrNKyYk3xznX2S72EV8JYQyLchOMZmm-D6HBIilS6FE6NoS4yx2LsdhUfbL7QvKEHHIsZkPsU9YxlQ-Z7eq_efwslL63mWEFNPzfrHVug7h4KfvFdOb66eru-rh8fb-6vKh8lypoao1r5uGEep03brgaMsMUQJ8ANlq3WjdghBGM1UHZQKXhjkvOdVOMiNCw_eK4_Xdt9yPP-BgZxE9dJ1L0M_RMmUEZ1KOoFyDPveIGVr7luPM5YWlxC4jtKsI7TIfS6hdRWiXuqMfA4fedW12yUf8E9dG0ZqO1MWagvHXjwjZoo-QPISYwQ829PEfn2_zyIXK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26843255</pqid></control><display><type>article</type><title>Uniqueness and self similarity of size distributions in grain growth and coarsening</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pande, C.S. ; Rajagopal, A.K.</creator><creatorcontrib>Pande, C.S. ; Rajagopal, A.K.</creatorcontrib><description>The late stage statistical self-similarity or scaling observed in normal grain growth and coarsening are derived from a model for their evolution using a Fokker–Planck equation obtained from stochastic considerations. Using a suitably generalized H-theorem, it is shown that there is indeed a unique state (self-similar state) evolving from an arbitrary initial state. The time dependence of the appropriate average sizes in normal grain growth, bubble growth, and coarsening are deduced from this model. Multiple self-similar states in some previous models based on mean field treatment do not appear in the present analysis.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/S1359-6454(01)00080-5</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Coarsening ; Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization ; Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Grain growth ; Materials science ; Metals. Metallurgy ; Physics ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Acta materialia, 2001-06, Vol.49 (10), p.1805-1811</ispartof><rights>2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-9739bb201a79fada1f28064ecde5f77b77fe4487269d68d3582ac5317a5284db3</citedby><cites>FETCH-LOGICAL-c366t-9739bb201a79fada1f28064ecde5f77b77fe4487269d68d3582ac5317a5284db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1359-6454(01)00080-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=986191$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pande, C.S.</creatorcontrib><creatorcontrib>Rajagopal, A.K.</creatorcontrib><title>Uniqueness and self similarity of size distributions in grain growth and coarsening</title><title>Acta materialia</title><description>The late stage statistical self-similarity or scaling observed in normal grain growth and coarsening are derived from a model for their evolution using a Fokker–Planck equation obtained from stochastic considerations. Using a suitably generalized H-theorem, it is shown that there is indeed a unique state (self-similar state) evolving from an arbitrary initial state. The time dependence of the appropriate average sizes in normal grain growth, bubble growth, and coarsening are deduced from this model. Multiple self-similar states in some previous models based on mean field treatment do not appear in the present analysis.</description><subject>Applied sciences</subject><subject>Coarsening</subject><subject>Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization</subject><subject>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Grain growth</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYso-PwJQkEQXVTzTroSEV8guBhnHdLkViOdVHM7yvjr7cyoWzf3Ad-5h3uK4pCSM0qoOp9QLutKCSlOCD0lhBhSyY1ihxrNKyYk3xznX2S72EV8JYQyLchOMZmm-D6HBIilS6FE6NoS4yx2LsdhUfbL7QvKEHHIsZkPsU9YxlQ-Z7eq_efwslL63mWEFNPzfrHVug7h4KfvFdOb66eru-rh8fb-6vKh8lypoao1r5uGEep03brgaMsMUQJ8ANlq3WjdghBGM1UHZQKXhjkvOdVOMiNCw_eK4_Xdt9yPP-BgZxE9dJ1L0M_RMmUEZ1KOoFyDPveIGVr7luPM5YWlxC4jtKsI7TIfS6hdRWiXuqMfA4fedW12yUf8E9dG0ZqO1MWagvHXjwjZoo-QPISYwQ829PEfn2_zyIXK</recordid><startdate>20010613</startdate><enddate>20010613</enddate><creator>Pande, C.S.</creator><creator>Rajagopal, A.K.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20010613</creationdate><title>Uniqueness and self similarity of size distributions in grain growth and coarsening</title><author>Pande, C.S. ; Rajagopal, A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-9739bb201a79fada1f28064ecde5f77b77fe4487269d68d3582ac5317a5284db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Coarsening</topic><topic>Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization</topic><topic>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Grain growth</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pande, C.S.</creatorcontrib><creatorcontrib>Rajagopal, A.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pande, C.S.</au><au>Rajagopal, A.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniqueness and self similarity of size distributions in grain growth and coarsening</atitle><jtitle>Acta materialia</jtitle><date>2001-06-13</date><risdate>2001</risdate><volume>49</volume><issue>10</issue><spage>1805</spage><epage>1811</epage><pages>1805-1811</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The late stage statistical self-similarity or scaling observed in normal grain growth and coarsening are derived from a model for their evolution using a Fokker–Planck equation obtained from stochastic considerations. Using a suitably generalized H-theorem, it is shown that there is indeed a unique state (self-similar state) evolving from an arbitrary initial state. The time dependence of the appropriate average sizes in normal grain growth, bubble growth, and coarsening are deduced from this model. Multiple self-similar states in some previous models based on mean field treatment do not appear in the present analysis.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1359-6454(01)00080-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2001-06, Vol.49 (10), p.1805-1811
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_26843255
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Coarsening
Cold working, work hardening
annealing, post-deformation annealing, quenching, tempering recovery, and crystallization
Cold working, work hardening
annealing, quenching, tempering, recovery, and recrystallization
textures
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Grain growth
Materials science
Metals. Metallurgy
Physics
Treatment of materials and its effects on microstructure and properties
title Uniqueness and self similarity of size distributions in grain growth and coarsening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniqueness%20and%20self%20similarity%20of%20size%20distributions%20in%20grain%20growth%20and%20coarsening&rft.jtitle=Acta%20materialia&rft.au=Pande,%20C.S.&rft.date=2001-06-13&rft.volume=49&rft.issue=10&rft.spage=1805&rft.epage=1811&rft.pages=1805-1811&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/S1359-6454(01)00080-5&rft_dat=%3Cproquest_cross%3E26843255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26843255&rft_id=info:pmid/&rft_els_id=S1359645401000805&rfr_iscdi=true