Uniqueness and self similarity of size distributions in grain growth and coarsening
The late stage statistical self-similarity or scaling observed in normal grain growth and coarsening are derived from a model for their evolution using a Fokker–Planck equation obtained from stochastic considerations. Using a suitably generalized H-theorem, it is shown that there is indeed a unique...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2001-06, Vol.49 (10), p.1805-1811 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1811 |
---|---|
container_issue | 10 |
container_start_page | 1805 |
container_title | Acta materialia |
container_volume | 49 |
creator | Pande, C.S. Rajagopal, A.K. |
description | The late stage statistical self-similarity or scaling observed in normal grain growth and coarsening are derived from a model for their evolution using a Fokker–Planck equation obtained from stochastic considerations. Using a suitably generalized H-theorem, it is shown that there is indeed a unique state (self-similar state) evolving from an arbitrary initial state. The time dependence of the appropriate average sizes in normal grain growth, bubble growth, and coarsening are deduced from this model. Multiple self-similar states in some previous models based on mean field treatment do not appear in the present analysis. |
doi_str_mv | 10.1016/S1359-6454(01)00080-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26843255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645401000805</els_id><sourcerecordid>26843255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-9739bb201a79fada1f28064ecde5f77b77fe4487269d68d3582ac5317a5284db3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYso-PwJQkEQXVTzTroSEV8guBhnHdLkViOdVHM7yvjr7cyoWzf3Ad-5h3uK4pCSM0qoOp9QLutKCSlOCD0lhBhSyY1ihxrNKyYk3xznX2S72EV8JYQyLchOMZmm-D6HBIilS6FE6NoS4yx2LsdhUfbL7QvKEHHIsZkPsU9YxlQ-Z7eq_efwslL63mWEFNPzfrHVug7h4KfvFdOb66eru-rh8fb-6vKh8lypoao1r5uGEep03brgaMsMUQJ8ANlq3WjdghBGM1UHZQKXhjkvOdVOMiNCw_eK4_Xdt9yPP-BgZxE9dJ1L0M_RMmUEZ1KOoFyDPveIGVr7luPM5YWlxC4jtKsI7TIfS6hdRWiXuqMfA4fedW12yUf8E9dG0ZqO1MWagvHXjwjZoo-QPISYwQ829PEfn2_zyIXK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26843255</pqid></control><display><type>article</type><title>Uniqueness and self similarity of size distributions in grain growth and coarsening</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pande, C.S. ; Rajagopal, A.K.</creator><creatorcontrib>Pande, C.S. ; Rajagopal, A.K.</creatorcontrib><description>The late stage statistical self-similarity or scaling observed in normal grain growth and coarsening are derived from a model for their evolution using a Fokker–Planck equation obtained from stochastic considerations. Using a suitably generalized H-theorem, it is shown that there is indeed a unique state (self-similar state) evolving from an arbitrary initial state. The time dependence of the appropriate average sizes in normal grain growth, bubble growth, and coarsening are deduced from this model. Multiple self-similar states in some previous models based on mean field treatment do not appear in the present analysis.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/S1359-6454(01)00080-5</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Coarsening ; Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization ; Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Grain growth ; Materials science ; Metals. Metallurgy ; Physics ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Acta materialia, 2001-06, Vol.49 (10), p.1805-1811</ispartof><rights>2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-9739bb201a79fada1f28064ecde5f77b77fe4487269d68d3582ac5317a5284db3</citedby><cites>FETCH-LOGICAL-c366t-9739bb201a79fada1f28064ecde5f77b77fe4487269d68d3582ac5317a5284db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1359-6454(01)00080-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=986191$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pande, C.S.</creatorcontrib><creatorcontrib>Rajagopal, A.K.</creatorcontrib><title>Uniqueness and self similarity of size distributions in grain growth and coarsening</title><title>Acta materialia</title><description>The late stage statistical self-similarity or scaling observed in normal grain growth and coarsening are derived from a model for their evolution using a Fokker–Planck equation obtained from stochastic considerations. Using a suitably generalized H-theorem, it is shown that there is indeed a unique state (self-similar state) evolving from an arbitrary initial state. The time dependence of the appropriate average sizes in normal grain growth, bubble growth, and coarsening are deduced from this model. Multiple self-similar states in some previous models based on mean field treatment do not appear in the present analysis.</description><subject>Applied sciences</subject><subject>Coarsening</subject><subject>Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization</subject><subject>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Grain growth</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYso-PwJQkEQXVTzTroSEV8guBhnHdLkViOdVHM7yvjr7cyoWzf3Ad-5h3uK4pCSM0qoOp9QLutKCSlOCD0lhBhSyY1ihxrNKyYk3xznX2S72EV8JYQyLchOMZmm-D6HBIilS6FE6NoS4yx2LsdhUfbL7QvKEHHIsZkPsU9YxlQ-Z7eq_efwslL63mWEFNPzfrHVug7h4KfvFdOb66eru-rh8fb-6vKh8lypoao1r5uGEep03brgaMsMUQJ8ANlq3WjdghBGM1UHZQKXhjkvOdVOMiNCw_eK4_Xdt9yPP-BgZxE9dJ1L0M_RMmUEZ1KOoFyDPveIGVr7luPM5YWlxC4jtKsI7TIfS6hdRWiXuqMfA4fedW12yUf8E9dG0ZqO1MWagvHXjwjZoo-QPISYwQ829PEfn2_zyIXK</recordid><startdate>20010613</startdate><enddate>20010613</enddate><creator>Pande, C.S.</creator><creator>Rajagopal, A.K.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20010613</creationdate><title>Uniqueness and self similarity of size distributions in grain growth and coarsening</title><author>Pande, C.S. ; Rajagopal, A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-9739bb201a79fada1f28064ecde5f77b77fe4487269d68d3582ac5317a5284db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Coarsening</topic><topic>Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization</topic><topic>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Grain growth</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pande, C.S.</creatorcontrib><creatorcontrib>Rajagopal, A.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pande, C.S.</au><au>Rajagopal, A.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniqueness and self similarity of size distributions in grain growth and coarsening</atitle><jtitle>Acta materialia</jtitle><date>2001-06-13</date><risdate>2001</risdate><volume>49</volume><issue>10</issue><spage>1805</spage><epage>1811</epage><pages>1805-1811</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The late stage statistical self-similarity or scaling observed in normal grain growth and coarsening are derived from a model for their evolution using a Fokker–Planck equation obtained from stochastic considerations. Using a suitably generalized H-theorem, it is shown that there is indeed a unique state (self-similar state) evolving from an arbitrary initial state. The time dependence of the appropriate average sizes in normal grain growth, bubble growth, and coarsening are deduced from this model. Multiple self-similar states in some previous models based on mean field treatment do not appear in the present analysis.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1359-6454(01)00080-5</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2001-06, Vol.49 (10), p.1805-1811 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_26843255 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Coarsening Cold working, work hardening annealing, post-deformation annealing, quenching, tempering recovery, and crystallization Cold working, work hardening annealing, quenching, tempering, recovery, and recrystallization textures Cross-disciplinary physics: materials science rheology Exact sciences and technology Grain growth Materials science Metals. Metallurgy Physics Treatment of materials and its effects on microstructure and properties |
title | Uniqueness and self similarity of size distributions in grain growth and coarsening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniqueness%20and%20self%20similarity%20of%20size%20distributions%20in%20grain%20growth%20and%20coarsening&rft.jtitle=Acta%20materialia&rft.au=Pande,%20C.S.&rft.date=2001-06-13&rft.volume=49&rft.issue=10&rft.spage=1805&rft.epage=1811&rft.pages=1805-1811&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/S1359-6454(01)00080-5&rft_dat=%3Cproquest_cross%3E26843255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26843255&rft_id=info:pmid/&rft_els_id=S1359645401000805&rfr_iscdi=true |