Analytic finite sample criteria for autoregressive-model order selection

Analytic finite sample equivalents for autoregressive-model order selection criteria are introduced. These equivalents are based on approximately analytic formulas and can be used in the case where the estimation method is least-squares-forward. In fact, these criteria are approximately analytic equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of electrical and computer engineering 2001-01, Vol.26 (1), p.9-12
Hauptverfasser: Karimi, Mahmood, Bastani, Mohammad H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 9
container_title Canadian journal of electrical and computer engineering
container_volume 26
creator Karimi, Mahmood
Bastani, Mohammad H
description Analytic finite sample equivalents for autoregressive-model order selection criteria are introduced. These equivalents are based on approximately analytic formulas and can be used in the case where the estimation method is least-squares-forward. In fact, these criteria are approximately analytic equivalents of existing empirical finite sample criteria. The performance of the finite sample criteria is better than that of their asymptotic equivalents in the finite sample case. In the large sample case, the criteria introduced in this paper converge to the existing criteria.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_26841667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>412569341</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-cc6bf58a012cb05e72ccd253fefcb7b4984c7bdfd39b175b7699cfcbcc631fc03</originalsourceid><addsrcrecordid>eNpdj01LxDAYhHNQcF39D8GDt0I-2iY9Lou6wsJe9Lwkb99IlrSpSSr47w3oydMwzDMDc0U2TLes0b3WN-Q25wtjUrOu3ZDDbjbhu3igzs--IM1mWgJSSNUkb6iLiZq1xIQfCXP2X9hMccRAYxox0YwBofg435FrZ0LG-z_dkvfnp7f9oTmeXl73u2OzCM5LA9Bb12nDuADLOlQCYBSddOjAKtsOugVlRzfKwXLVWdUPA9So9iR3wOSWPP7uLil-rpjLefIZMAQzY1zzWfS65X2vKvjwD7zENdW3leFctoILJX8AcW1Wvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211342127</pqid></control><display><type>article</type><title>Analytic finite sample criteria for autoregressive-model order selection</title><source>IEEE Electronic Library (IEL)</source><creator>Karimi, Mahmood ; Bastani, Mohammad H</creator><creatorcontrib>Karimi, Mahmood ; Bastani, Mohammad H</creatorcontrib><description>Analytic finite sample equivalents for autoregressive-model order selection criteria are introduced. These equivalents are based on approximately analytic formulas and can be used in the case where the estimation method is least-squares-forward. In fact, these criteria are approximately analytic equivalents of existing empirical finite sample criteria. The performance of the finite sample criteria is better than that of their asymptotic equivalents in the finite sample case. In the large sample case, the criteria introduced in this paper converge to the existing criteria.</description><identifier>ISSN: 0840-8688</identifier><language>eng</language><publisher>Montreal: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Digital signal processors</subject><ispartof>Canadian journal of electrical and computer engineering, 2001-01, Vol.26 (1), p.9-12</ispartof><rights>Copyright IEEE Canada Jan 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782</link.rule.ids></links><search><creatorcontrib>Karimi, Mahmood</creatorcontrib><creatorcontrib>Bastani, Mohammad H</creatorcontrib><title>Analytic finite sample criteria for autoregressive-model order selection</title><title>Canadian journal of electrical and computer engineering</title><description>Analytic finite sample equivalents for autoregressive-model order selection criteria are introduced. These equivalents are based on approximately analytic formulas and can be used in the case where the estimation method is least-squares-forward. In fact, these criteria are approximately analytic equivalents of existing empirical finite sample criteria. The performance of the finite sample criteria is better than that of their asymptotic equivalents in the finite sample case. In the large sample case, the criteria introduced in this paper converge to the existing criteria.</description><subject>Digital signal processors</subject><issn>0840-8688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpdj01LxDAYhHNQcF39D8GDt0I-2iY9Lou6wsJe9Lwkb99IlrSpSSr47w3oydMwzDMDc0U2TLes0b3WN-Q25wtjUrOu3ZDDbjbhu3igzs--IM1mWgJSSNUkb6iLiZq1xIQfCXP2X9hMccRAYxox0YwBofg435FrZ0LG-z_dkvfnp7f9oTmeXl73u2OzCM5LA9Bb12nDuADLOlQCYBSddOjAKtsOugVlRzfKwXLVWdUPA9So9iR3wOSWPP7uLil-rpjLefIZMAQzY1zzWfS65X2vKvjwD7zENdW3leFctoILJX8AcW1Wvw</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Karimi, Mahmood</creator><creator>Bastani, Mohammad H</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010101</creationdate><title>Analytic finite sample criteria for autoregressive-model order selection</title><author>Karimi, Mahmood ; Bastani, Mohammad H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-cc6bf58a012cb05e72ccd253fefcb7b4984c7bdfd39b175b7699cfcbcc631fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Digital signal processors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karimi, Mahmood</creatorcontrib><creatorcontrib>Bastani, Mohammad H</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Canadian journal of electrical and computer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimi, Mahmood</au><au>Bastani, Mohammad H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic finite sample criteria for autoregressive-model order selection</atitle><jtitle>Canadian journal of electrical and computer engineering</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>26</volume><issue>1</issue><spage>9</spage><epage>12</epage><pages>9-12</pages><issn>0840-8688</issn><abstract>Analytic finite sample equivalents for autoregressive-model order selection criteria are introduced. These equivalents are based on approximately analytic formulas and can be used in the case where the estimation method is least-squares-forward. In fact, these criteria are approximately analytic equivalents of existing empirical finite sample criteria. The performance of the finite sample criteria is better than that of their asymptotic equivalents in the finite sample case. In the large sample case, the criteria introduced in this paper converge to the existing criteria.</abstract><cop>Montreal</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0840-8688
ispartof Canadian journal of electrical and computer engineering, 2001-01, Vol.26 (1), p.9-12
issn 0840-8688
language eng
recordid cdi_proquest_miscellaneous_26841667
source IEEE Electronic Library (IEL)
subjects Digital signal processors
title Analytic finite sample criteria for autoregressive-model order selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20finite%20sample%20criteria%20for%20autoregressive-model%20order%20selection&rft.jtitle=Canadian%20journal%20of%20electrical%20and%20computer%20engineering&rft.au=Karimi,%20Mahmood&rft.date=2001-01-01&rft.volume=26&rft.issue=1&rft.spage=9&rft.epage=12&rft.pages=9-12&rft.issn=0840-8688&rft_id=info:doi/&rft_dat=%3Cproquest%3E412569341%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211342127&rft_id=info:pmid/&rfr_iscdi=true