An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice

Key message An alanine to valine mutation of glutamyl-tRNA reductase’s 510th amino acid improves 5-aminolevulinic acid synthesis in rice. 5-aminolevulinic acid (ALA) is the common precursor of all tetrapyrroles and plays an important role in plant growth regulation. ALA is synthesized from glutamate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2022-08, Vol.135 (8), p.2817-2831
Hauptverfasser: Jiang, Meng, Dai, Shang, Zheng, Yun-Chao, Li, Rui-Qing, Tan, Yuan-Yuan, Pan, Gang, Møller, Ian Max, Song, Shi-Yong, Huang, Jian-Zhong, Shu, Qing-Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2831
container_issue 8
container_start_page 2817
container_title Theoretical and applied genetics
container_volume 135
creator Jiang, Meng
Dai, Shang
Zheng, Yun-Chao
Li, Rui-Qing
Tan, Yuan-Yuan
Pan, Gang
Møller, Ian Max
Song, Shi-Yong
Huang, Jian-Zhong
Shu, Qing-Yao
description Key message An alanine to valine mutation of glutamyl-tRNA reductase’s 510th amino acid improves 5-aminolevulinic acid synthesis in rice. 5-aminolevulinic acid (ALA) is the common precursor of all tetrapyrroles and plays an important role in plant growth regulation. ALA is synthesized from glutamate, catalyzed by glutamyl-tRNA synthetase (GluRS), glutamyl-tRNA reductase (GluTR), and glutamate-1-semialdehyde aminotransferase (GSAT). In Arabidopsis, ALA synthesis is the rate-limiting step in tetrapyrrole production via GluTR post-translational regulations. In rice, mutations of GluTR and GSAT homologs are known to confer chlorophyll deficiency phenotypes; however, the enzymatic activity of rice GluRS, GluTR, and GSAT and the post-translational regulation of rice GluTR have not been investigated experimentally. We have demonstrated that a suppressor mutation in rice partially reverts the xantha trait. In the present study, we first determine that the suppressor mutation results from a G → A nucleotide substitution of OsGluTR (and an A → V change of its 510th amino acid). Protein homology modeling and molecular docking show that the OsGluTR A510V mutation increases its substrate binding. We then demonstrate that the OsGluTR A510V mutation increases ALA synthesis in Escherichia coli without affecting its interaction with OsFLU. We further explore homologous genes encoding GluTR across 193 plant species and find that the amino acid (A) is 100% conserved at the position, suggesting its critical role in GluTR. Thus, we demonstrate that the gain-of-function OsGluTR A510V mutation underlies suppression of the xantha trait, experimentally proves the enzymatic activity of rice GluRS, GluTR, and GSAT in ALA synthesis, and uncovers conservation of the alanine corresponding to the 510th amino acid of OsGluTR across plant species.
doi_str_mv 10.1007/s00122-022-04151-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2684097992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A711658020</galeid><sourcerecordid>A711658020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-ca528f81b4ec4518e16e6e352e966b43459f768b797dfb9d02721995903572a13</originalsourceid><addsrcrecordid>eNp9klFrFDEQgBdR8Kz-AZ8CvuhD6iSbbDaPR1FbKApVn0MuO3tN2U1qki3evzfLFcqJSBgyGb5vyMA0zVsG5wxAfcwAjHMKawgmGVXPmg0TLaecC_682QAIoFJJ_rJ5lfMdAHAJ7abx20DsZIMPSEokD3Zas3kptvgYSBzJfqqP-TDRcvN1SxIOiys2I8Fwa4PDTCS1sw9xwoelyt4R6_xA8iGUW8w-Ex9I8g5fNy9GO2V883ifNT8_f_pxcUmvv325utheUydkW6izkvdjz3YCa4H1yDrssJUcddftRCukHlXX75RWw7jTA3DFmdZSQysVt6w9a94f-96n-GvBXMzss8OpDolxyYZ3vQCttOYVffcXeheXFOrvKqWF4i0X4ona2wmND2Msybq1qdkqxjrZA4dKnf-DqmfA2bsYcPS1fiJ8OBEqU_B32dslZ3P1_eaU5UfWpZhzwtHcJz_bdDAMzLoA5rgABtZYF8CoKrVHKVc47DE9Tfcf6w8GQa9W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694723244</pqid></control><display><type>article</type><title>An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jiang, Meng ; Dai, Shang ; Zheng, Yun-Chao ; Li, Rui-Qing ; Tan, Yuan-Yuan ; Pan, Gang ; Møller, Ian Max ; Song, Shi-Yong ; Huang, Jian-Zhong ; Shu, Qing-Yao</creator><creatorcontrib>Jiang, Meng ; Dai, Shang ; Zheng, Yun-Chao ; Li, Rui-Qing ; Tan, Yuan-Yuan ; Pan, Gang ; Møller, Ian Max ; Song, Shi-Yong ; Huang, Jian-Zhong ; Shu, Qing-Yao</creatorcontrib><description>Key message An alanine to valine mutation of glutamyl-tRNA reductase’s 510th amino acid improves 5-aminolevulinic acid synthesis in rice. 5-aminolevulinic acid (ALA) is the common precursor of all tetrapyrroles and plays an important role in plant growth regulation. ALA is synthesized from glutamate, catalyzed by glutamyl-tRNA synthetase (GluRS), glutamyl-tRNA reductase (GluTR), and glutamate-1-semialdehyde aminotransferase (GSAT). In Arabidopsis, ALA synthesis is the rate-limiting step in tetrapyrrole production via GluTR post-translational regulations. In rice, mutations of GluTR and GSAT homologs are known to confer chlorophyll deficiency phenotypes; however, the enzymatic activity of rice GluRS, GluTR, and GSAT and the post-translational regulation of rice GluTR have not been investigated experimentally. We have demonstrated that a suppressor mutation in rice partially reverts the xantha trait. In the present study, we first determine that the suppressor mutation results from a G → A nucleotide substitution of OsGluTR (and an A → V change of its 510th amino acid). Protein homology modeling and molecular docking show that the OsGluTR A510V mutation increases its substrate binding. We then demonstrate that the OsGluTR A510V mutation increases ALA synthesis in Escherichia coli without affecting its interaction with OsFLU. We further explore homologous genes encoding GluTR across 193 plant species and find that the amino acid (A) is 100% conserved at the position, suggesting its critical role in GluTR. Thus, we demonstrate that the gain-of-function OsGluTR A510V mutation underlies suppression of the xantha trait, experimentally proves the enzymatic activity of rice GluRS, GluTR, and GSAT in ALA synthesis, and uncovers conservation of the alanine corresponding to the 510th amino acid of OsGluTR across plant species.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-022-04151-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Alanine ; Amino acid substitution ; Amino acids ; Aminolevulinic acid ; Biochemistry ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Chlorophyll ; Enzymatic activity ; Flowers &amp; plants ; Gene mutations ; Genetic aspects ; Genetic suppression ; Glutamate-tRNA ligase ; Glutamic acid receptors ; Homology ; Life Sciences ; Mutation ; Original Article ; Phenotypes ; Physiological aspects ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Post-translation ; Reductase ; Rice ; Tetrapyrroles ; Transfer RNA ; Translation ; tRNA Glu ; tRNA Val ; Valine</subject><ispartof>Theoretical and applied genetics, 2022-08, Vol.135 (8), p.2817-2831</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-ca528f81b4ec4518e16e6e352e966b43459f768b797dfb9d02721995903572a13</citedby><cites>FETCH-LOGICAL-c453t-ca528f81b4ec4518e16e6e352e966b43459f768b797dfb9d02721995903572a13</cites><orcidid>0000-0002-9201-0593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-022-04151-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-022-04151-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jiang, Meng</creatorcontrib><creatorcontrib>Dai, Shang</creatorcontrib><creatorcontrib>Zheng, Yun-Chao</creatorcontrib><creatorcontrib>Li, Rui-Qing</creatorcontrib><creatorcontrib>Tan, Yuan-Yuan</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><creatorcontrib>Møller, Ian Max</creatorcontrib><creatorcontrib>Song, Shi-Yong</creatorcontrib><creatorcontrib>Huang, Jian-Zhong</creatorcontrib><creatorcontrib>Shu, Qing-Yao</creatorcontrib><title>An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><description>Key message An alanine to valine mutation of glutamyl-tRNA reductase’s 510th amino acid improves 5-aminolevulinic acid synthesis in rice. 5-aminolevulinic acid (ALA) is the common precursor of all tetrapyrroles and plays an important role in plant growth regulation. ALA is synthesized from glutamate, catalyzed by glutamyl-tRNA synthetase (GluRS), glutamyl-tRNA reductase (GluTR), and glutamate-1-semialdehyde aminotransferase (GSAT). In Arabidopsis, ALA synthesis is the rate-limiting step in tetrapyrrole production via GluTR post-translational regulations. In rice, mutations of GluTR and GSAT homologs are known to confer chlorophyll deficiency phenotypes; however, the enzymatic activity of rice GluRS, GluTR, and GSAT and the post-translational regulation of rice GluTR have not been investigated experimentally. We have demonstrated that a suppressor mutation in rice partially reverts the xantha trait. In the present study, we first determine that the suppressor mutation results from a G → A nucleotide substitution of OsGluTR (and an A → V change of its 510th amino acid). Protein homology modeling and molecular docking show that the OsGluTR A510V mutation increases its substrate binding. We then demonstrate that the OsGluTR A510V mutation increases ALA synthesis in Escherichia coli without affecting its interaction with OsFLU. We further explore homologous genes encoding GluTR across 193 plant species and find that the amino acid (A) is 100% conserved at the position, suggesting its critical role in GluTR. Thus, we demonstrate that the gain-of-function OsGluTR A510V mutation underlies suppression of the xantha trait, experimentally proves the enzymatic activity of rice GluRS, GluTR, and GSAT in ALA synthesis, and uncovers conservation of the alanine corresponding to the 510th amino acid of OsGluTR across plant species.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Alanine</subject><subject>Amino acid substitution</subject><subject>Amino acids</subject><subject>Aminolevulinic acid</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Chlorophyll</subject><subject>Enzymatic activity</subject><subject>Flowers &amp; plants</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genetic suppression</subject><subject>Glutamate-tRNA ligase</subject><subject>Glutamic acid receptors</subject><subject>Homology</subject><subject>Life Sciences</subject><subject>Mutation</subject><subject>Original Article</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Post-translation</subject><subject>Reductase</subject><subject>Rice</subject><subject>Tetrapyrroles</subject><subject>Transfer RNA</subject><subject>Translation</subject><subject>tRNA Glu</subject><subject>tRNA Val</subject><subject>Valine</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9klFrFDEQgBdR8Kz-AZ8CvuhD6iSbbDaPR1FbKApVn0MuO3tN2U1qki3evzfLFcqJSBgyGb5vyMA0zVsG5wxAfcwAjHMKawgmGVXPmg0TLaecC_682QAIoFJJ_rJ5lfMdAHAJ7abx20DsZIMPSEokD3Zas3kptvgYSBzJfqqP-TDRcvN1SxIOiys2I8Fwa4PDTCS1sw9xwoelyt4R6_xA8iGUW8w-Ex9I8g5fNy9GO2V883ifNT8_f_pxcUmvv325utheUydkW6izkvdjz3YCa4H1yDrssJUcddftRCukHlXX75RWw7jTA3DFmdZSQysVt6w9a94f-96n-GvBXMzss8OpDolxyYZ3vQCttOYVffcXeheXFOrvKqWF4i0X4ona2wmND2Msybq1qdkqxjrZA4dKnf-DqmfA2bsYcPS1fiJ8OBEqU_B32dslZ3P1_eaU5UfWpZhzwtHcJz_bdDAMzLoA5rgABtZYF8CoKrVHKVc47DE9Tfcf6w8GQa9W</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Jiang, Meng</creator><creator>Dai, Shang</creator><creator>Zheng, Yun-Chao</creator><creator>Li, Rui-Qing</creator><creator>Tan, Yuan-Yuan</creator><creator>Pan, Gang</creator><creator>Møller, Ian Max</creator><creator>Song, Shi-Yong</creator><creator>Huang, Jian-Zhong</creator><creator>Shu, Qing-Yao</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9201-0593</orcidid></search><sort><creationdate>20220801</creationdate><title>An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice</title><author>Jiang, Meng ; Dai, Shang ; Zheng, Yun-Chao ; Li, Rui-Qing ; Tan, Yuan-Yuan ; Pan, Gang ; Møller, Ian Max ; Song, Shi-Yong ; Huang, Jian-Zhong ; Shu, Qing-Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-ca528f81b4ec4518e16e6e352e966b43459f768b797dfb9d02721995903572a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Alanine</topic><topic>Amino acid substitution</topic><topic>Amino acids</topic><topic>Aminolevulinic acid</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Chlorophyll</topic><topic>Enzymatic activity</topic><topic>Flowers &amp; plants</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genetic suppression</topic><topic>Glutamate-tRNA ligase</topic><topic>Glutamic acid receptors</topic><topic>Homology</topic><topic>Life Sciences</topic><topic>Mutation</topic><topic>Original Article</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Post-translation</topic><topic>Reductase</topic><topic>Rice</topic><topic>Tetrapyrroles</topic><topic>Transfer RNA</topic><topic>Translation</topic><topic>tRNA Glu</topic><topic>tRNA Val</topic><topic>Valine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Meng</creatorcontrib><creatorcontrib>Dai, Shang</creatorcontrib><creatorcontrib>Zheng, Yun-Chao</creatorcontrib><creatorcontrib>Li, Rui-Qing</creatorcontrib><creatorcontrib>Tan, Yuan-Yuan</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><creatorcontrib>Møller, Ian Max</creatorcontrib><creatorcontrib>Song, Shi-Yong</creatorcontrib><creatorcontrib>Huang, Jian-Zhong</creatorcontrib><creatorcontrib>Shu, Qing-Yao</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Meng</au><au>Dai, Shang</au><au>Zheng, Yun-Chao</au><au>Li, Rui-Qing</au><au>Tan, Yuan-Yuan</au><au>Pan, Gang</au><au>Møller, Ian Max</au><au>Song, Shi-Yong</au><au>Huang, Jian-Zhong</au><au>Shu, Qing-Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>135</volume><issue>8</issue><spage>2817</spage><epage>2831</epage><pages>2817-2831</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message An alanine to valine mutation of glutamyl-tRNA reductase’s 510th amino acid improves 5-aminolevulinic acid synthesis in rice. 5-aminolevulinic acid (ALA) is the common precursor of all tetrapyrroles and plays an important role in plant growth regulation. ALA is synthesized from glutamate, catalyzed by glutamyl-tRNA synthetase (GluRS), glutamyl-tRNA reductase (GluTR), and glutamate-1-semialdehyde aminotransferase (GSAT). In Arabidopsis, ALA synthesis is the rate-limiting step in tetrapyrrole production via GluTR post-translational regulations. In rice, mutations of GluTR and GSAT homologs are known to confer chlorophyll deficiency phenotypes; however, the enzymatic activity of rice GluRS, GluTR, and GSAT and the post-translational regulation of rice GluTR have not been investigated experimentally. We have demonstrated that a suppressor mutation in rice partially reverts the xantha trait. In the present study, we first determine that the suppressor mutation results from a G → A nucleotide substitution of OsGluTR (and an A → V change of its 510th amino acid). Protein homology modeling and molecular docking show that the OsGluTR A510V mutation increases its substrate binding. We then demonstrate that the OsGluTR A510V mutation increases ALA synthesis in Escherichia coli without affecting its interaction with OsFLU. We further explore homologous genes encoding GluTR across 193 plant species and find that the amino acid (A) is 100% conserved at the position, suggesting its critical role in GluTR. Thus, we demonstrate that the gain-of-function OsGluTR A510V mutation underlies suppression of the xantha trait, experimentally proves the enzymatic activity of rice GluRS, GluTR, and GSAT in ALA synthesis, and uncovers conservation of the alanine corresponding to the 510th amino acid of OsGluTR across plant species.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00122-022-04151-7</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9201-0593</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2022-08, Vol.135 (8), p.2817-2831
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_2684097992
source SpringerLink Journals - AutoHoldings
subjects Agricultural research
Agriculture
Alanine
Amino acid substitution
Amino acids
Aminolevulinic acid
Biochemistry
Biomedical and Life Sciences
Biosynthesis
Biotechnology
Chlorophyll
Enzymatic activity
Flowers & plants
Gene mutations
Genetic aspects
Genetic suppression
Glutamate-tRNA ligase
Glutamic acid receptors
Homology
Life Sciences
Mutation
Original Article
Phenotypes
Physiological aspects
Plant Biochemistry
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Post-translation
Reductase
Rice
Tetrapyrroles
Transfer RNA
Translation
tRNA Glu
tRNA Val
Valine
title An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20alanine%20to%20valine%20mutation%20of%20glutamyl-tRNA%20reductase%20enhances%205-aminolevulinic%20acid%20synthesis%20in%20rice&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Jiang,%20Meng&rft.date=2022-08-01&rft.volume=135&rft.issue=8&rft.spage=2817&rft.epage=2831&rft.pages=2817-2831&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-022-04151-7&rft_dat=%3Cgale_proqu%3EA711658020%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694723244&rft_id=info:pmid/&rft_galeid=A711658020&rfr_iscdi=true