Editing melon eIF4E associates with virus resistance and male sterility
Summary The cap‐binding protein eIF4E, through its interaction with eIF4G, constitutes the core of the eIF4F complex, which plays a key role in the circularization of mRNAs and their subsequent cap‐dependent translation. In addition to its fundamental role in mRNA translation initiation, other funct...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2022-10, Vol.20 (10), p.2006-2022 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2022 |
---|---|
container_issue | 10 |
container_start_page | 2006 |
container_title | Plant biotechnology journal |
container_volume | 20 |
creator | Pechar, Giuliano S. Donaire, Livia Gosalvez, Blanca García‐Almodovar, Carlos Sánchez‐Pina, María Amelia Truniger, Verónica Aranda, Miguel A. |
description | Summary
The cap‐binding protein eIF4E, through its interaction with eIF4G, constitutes the core of the eIF4F complex, which plays a key role in the circularization of mRNAs and their subsequent cap‐dependent translation. In addition to its fundamental role in mRNA translation initiation, other functions have been described or suggested for eIF4E, including acting as a proviral factor and participating in sexual development. We used CRISPR/Cas9 genome editing to generate melon eif4e knockout mutant lines. Editing worked efficiently in melon, as we obtained transformed plants with a single‐nucleotide deletion in homozygosis in the first eIF4E exon already in a T0 generation. Edited and non‐transgenic plants of a segregating F2 generation were inoculated with Moroccan watermelon mosaic virus (MWMV); homozygous mutant plants showed virus resistance, while heterozygous and non‐mutant plants were infected, in agreement with our previous results with plants silenced in eIF4E. Interestingly, all homozygous edited plants of the T0 and F2 generations showed a male sterility phenotype, while crossing with wild‐type plants restored fertility, displaying a perfect correlation between the segregation of the male sterility phenotype and the segregation of the eif4e mutation. Morphological comparative analysis of melon male flowers along consecutive developmental stages showed postmeiotic abnormal development for both microsporocytes and tapetum, with clear differences in the timing of tapetum degradation in the mutant versus wild‐type. An RNA‐Seq analysis identified critical genes in pollen development that were down‐regulated in flowers of eif4e/eif4e plants, and suggested that eIF4E‐specific mRNA translation initiation is a limiting factor for male gametes formation in melon.
Resistance to MWMV is associated with eIF4E editing and eif4e knock‐out plants show a post‐meiotic, sporophytic male sterility phenotype. |
doi_str_mv | 10.1111/pbi.13885 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2684095378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741530416</galeid><sourcerecordid>A741530416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4555-366aabba2cdad3af093d1a4e526432989f7830044e859c678d468eba8de624d83</originalsourceid><addsrcrecordid>eNp1kUtrGzEUhUVpaZ6L_oEg6KZZ2JZGz1mmxnENgWTRroVGuuMozMOVZmL87yPHaUpCq7uQuHz33CMOQl8omdJ8ZpsqTCnTWnxAx5RLNVFSFB9f35wfoZOUHggpqBTyMzpiQimtNTtGy4UPQ-jWuIWm7zCsrvkC25R6F-wACW_DcI8fQxwTjpBCGmznANvO49Y2gNMAMTRh2J2hT7VtEpy_3Kfo1_Xi5_zH5OZ2uZpf3UwcF0JMmJTWVpUtnLee2ZqUzFPLQRSSs6LUZa00I4Rz0KJ0UmnPpYbKag-y4F6zU_TtoLuJ_e8R0mDakBw0je2gH5MppOakFEzt0a_v0Id-jF12ZwpFJZVSl-ovtc7_MaGr-yFatxc1V4pTwQinMlPTf1C5PLTB9R3UIfffDFweBlzsU4pQm00MrY07Q4nZh2ZyaOY5tMxevBgdqxb8K_knpQzMDsA2b9n9X8ncfV8dJJ8AaZqdjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716166897</pqid></control><display><type>article</type><title>Editing melon eIF4E associates with virus resistance and male sterility</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Pechar, Giuliano S. ; Donaire, Livia ; Gosalvez, Blanca ; García‐Almodovar, Carlos ; Sánchez‐Pina, María Amelia ; Truniger, Verónica ; Aranda, Miguel A.</creator><creatorcontrib>Pechar, Giuliano S. ; Donaire, Livia ; Gosalvez, Blanca ; García‐Almodovar, Carlos ; Sánchez‐Pina, María Amelia ; Truniger, Verónica ; Aranda, Miguel A.</creatorcontrib><description>Summary
The cap‐binding protein eIF4E, through its interaction with eIF4G, constitutes the core of the eIF4F complex, which plays a key role in the circularization of mRNAs and their subsequent cap‐dependent translation. In addition to its fundamental role in mRNA translation initiation, other functions have been described or suggested for eIF4E, including acting as a proviral factor and participating in sexual development. We used CRISPR/Cas9 genome editing to generate melon eif4e knockout mutant lines. Editing worked efficiently in melon, as we obtained transformed plants with a single‐nucleotide deletion in homozygosis in the first eIF4E exon already in a T0 generation. Edited and non‐transgenic plants of a segregating F2 generation were inoculated with Moroccan watermelon mosaic virus (MWMV); homozygous mutant plants showed virus resistance, while heterozygous and non‐mutant plants were infected, in agreement with our previous results with plants silenced in eIF4E. Interestingly, all homozygous edited plants of the T0 and F2 generations showed a male sterility phenotype, while crossing with wild‐type plants restored fertility, displaying a perfect correlation between the segregation of the male sterility phenotype and the segregation of the eif4e mutation. Morphological comparative analysis of melon male flowers along consecutive developmental stages showed postmeiotic abnormal development for both microsporocytes and tapetum, with clear differences in the timing of tapetum degradation in the mutant versus wild‐type. An RNA‐Seq analysis identified critical genes in pollen development that were down‐regulated in flowers of eif4e/eif4e plants, and suggested that eIF4E‐specific mRNA translation initiation is a limiting factor for male gametes formation in melon.
Resistance to MWMV is associated with eIF4E editing and eif4e knock‐out plants show a post‐meiotic, sporophytic male sterility phenotype.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13885</identifier><identifier>PMID: 35778883</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Amino acids ; Analysis ; Comparative analysis ; CRISPR ; CRISPR-Cas Systems ; Crop diseases ; cucurbit ; Cucurbitaceae - genetics ; Cucurbitaceae - virology ; Developmental stages ; Disease resistance ; Editing ; Efficiency ; Eukaryotic Initiation Factor-4E - genetics ; Eukaryotic Initiation Factor-4F - metabolism ; Eukaryotic Initiation Factor-4G - metabolism ; Fertility ; Flowers ; Fruits ; Gametes ; Gametogenesis, Plant - genetics ; Gene deletion ; Gene Editing ; Genetic engineering ; Genetic translation ; Genetically modified plants ; Genomes ; Genomics ; Genotype & phenotype ; Initiation factor eIF-4E ; Initiation factor eIF-4G ; Male sterility ; Males ; mRNA ; Mutants ; Mutation ; Nucleotides ; Phenotypes ; Plant Diseases - genetics ; Plant Diseases - virology ; Plant Infertility - genetics ; Plant Proteins - genetics ; Plants (botany) ; Pollen ; Pollen - genetics ; Pollen - growth & development ; Potyvirus ; potyvirus resistance ; Protein binding ; Proteins ; resistance breaking ; RNA ; sexual development ; Transgenic plants ; Translation initiation ; Viruses ; Water melons</subject><ispartof>Plant biotechnology journal, 2022-10, Vol.20 (10), p.2006-2022</ispartof><rights>2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4555-366aabba2cdad3af093d1a4e526432989f7830044e859c678d468eba8de624d83</citedby><cites>FETCH-LOGICAL-c4555-366aabba2cdad3af093d1a4e526432989f7830044e859c678d468eba8de624d83</cites><orcidid>0000-0001-5989-7148 ; 0000-0002-0828-973X ; 0000-0002-5454-2994 ; 0000-0003-3457-9156 ; 0000-0002-3648-5666 ; 0000-0002-8504-4541 ; 0000-0001-8221-2434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13885$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13885$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35778883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pechar, Giuliano S.</creatorcontrib><creatorcontrib>Donaire, Livia</creatorcontrib><creatorcontrib>Gosalvez, Blanca</creatorcontrib><creatorcontrib>García‐Almodovar, Carlos</creatorcontrib><creatorcontrib>Sánchez‐Pina, María Amelia</creatorcontrib><creatorcontrib>Truniger, Verónica</creatorcontrib><creatorcontrib>Aranda, Miguel A.</creatorcontrib><title>Editing melon eIF4E associates with virus resistance and male sterility</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
The cap‐binding protein eIF4E, through its interaction with eIF4G, constitutes the core of the eIF4F complex, which plays a key role in the circularization of mRNAs and their subsequent cap‐dependent translation. In addition to its fundamental role in mRNA translation initiation, other functions have been described or suggested for eIF4E, including acting as a proviral factor and participating in sexual development. We used CRISPR/Cas9 genome editing to generate melon eif4e knockout mutant lines. Editing worked efficiently in melon, as we obtained transformed plants with a single‐nucleotide deletion in homozygosis in the first eIF4E exon already in a T0 generation. Edited and non‐transgenic plants of a segregating F2 generation were inoculated with Moroccan watermelon mosaic virus (MWMV); homozygous mutant plants showed virus resistance, while heterozygous and non‐mutant plants were infected, in agreement with our previous results with plants silenced in eIF4E. Interestingly, all homozygous edited plants of the T0 and F2 generations showed a male sterility phenotype, while crossing with wild‐type plants restored fertility, displaying a perfect correlation between the segregation of the male sterility phenotype and the segregation of the eif4e mutation. Morphological comparative analysis of melon male flowers along consecutive developmental stages showed postmeiotic abnormal development for both microsporocytes and tapetum, with clear differences in the timing of tapetum degradation in the mutant versus wild‐type. An RNA‐Seq analysis identified critical genes in pollen development that were down‐regulated in flowers of eif4e/eif4e plants, and suggested that eIF4E‐specific mRNA translation initiation is a limiting factor for male gametes formation in melon.
Resistance to MWMV is associated with eIF4E editing and eif4e knock‐out plants show a post‐meiotic, sporophytic male sterility phenotype.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Comparative analysis</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Crop diseases</subject><subject>cucurbit</subject><subject>Cucurbitaceae - genetics</subject><subject>Cucurbitaceae - virology</subject><subject>Developmental stages</subject><subject>Disease resistance</subject><subject>Editing</subject><subject>Efficiency</subject><subject>Eukaryotic Initiation Factor-4E - genetics</subject><subject>Eukaryotic Initiation Factor-4F - metabolism</subject><subject>Eukaryotic Initiation Factor-4G - metabolism</subject><subject>Fertility</subject><subject>Flowers</subject><subject>Fruits</subject><subject>Gametes</subject><subject>Gametogenesis, Plant - genetics</subject><subject>Gene deletion</subject><subject>Gene Editing</subject><subject>Genetic engineering</subject><subject>Genetic translation</subject><subject>Genetically modified plants</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Initiation factor eIF-4E</subject><subject>Initiation factor eIF-4G</subject><subject>Male sterility</subject><subject>Males</subject><subject>mRNA</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Phenotypes</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - virology</subject><subject>Plant Infertility - genetics</subject><subject>Plant Proteins - genetics</subject><subject>Plants (botany)</subject><subject>Pollen</subject><subject>Pollen - genetics</subject><subject>Pollen - growth & development</subject><subject>Potyvirus</subject><subject>potyvirus resistance</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>resistance breaking</subject><subject>RNA</subject><subject>sexual development</subject><subject>Transgenic plants</subject><subject>Translation initiation</subject><subject>Viruses</subject><subject>Water melons</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtrGzEUhUVpaZ6L_oEg6KZZ2JZGz1mmxnENgWTRroVGuuMozMOVZmL87yPHaUpCq7uQuHz33CMOQl8omdJ8ZpsqTCnTWnxAx5RLNVFSFB9f35wfoZOUHggpqBTyMzpiQimtNTtGy4UPQ-jWuIWm7zCsrvkC25R6F-wACW_DcI8fQxwTjpBCGmznANvO49Y2gNMAMTRh2J2hT7VtEpy_3Kfo1_Xi5_zH5OZ2uZpf3UwcF0JMmJTWVpUtnLee2ZqUzFPLQRSSs6LUZa00I4Rz0KJ0UmnPpYbKag-y4F6zU_TtoLuJ_e8R0mDakBw0je2gH5MppOakFEzt0a_v0Id-jF12ZwpFJZVSl-ovtc7_MaGr-yFatxc1V4pTwQinMlPTf1C5PLTB9R3UIfffDFweBlzsU4pQm00MrY07Q4nZh2ZyaOY5tMxevBgdqxb8K_knpQzMDsA2b9n9X8ncfV8dJJ8AaZqdjQ</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Pechar, Giuliano S.</creator><creator>Donaire, Livia</creator><creator>Gosalvez, Blanca</creator><creator>García‐Almodovar, Carlos</creator><creator>Sánchez‐Pina, María Amelia</creator><creator>Truniger, Verónica</creator><creator>Aranda, Miguel A.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5989-7148</orcidid><orcidid>https://orcid.org/0000-0002-0828-973X</orcidid><orcidid>https://orcid.org/0000-0002-5454-2994</orcidid><orcidid>https://orcid.org/0000-0003-3457-9156</orcidid><orcidid>https://orcid.org/0000-0002-3648-5666</orcidid><orcidid>https://orcid.org/0000-0002-8504-4541</orcidid><orcidid>https://orcid.org/0000-0001-8221-2434</orcidid></search><sort><creationdate>202210</creationdate><title>Editing melon eIF4E associates with virus resistance and male sterility</title><author>Pechar, Giuliano S. ; Donaire, Livia ; Gosalvez, Blanca ; García‐Almodovar, Carlos ; Sánchez‐Pina, María Amelia ; Truniger, Verónica ; Aranda, Miguel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4555-366aabba2cdad3af093d1a4e526432989f7830044e859c678d468eba8de624d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Comparative analysis</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Crop diseases</topic><topic>cucurbit</topic><topic>Cucurbitaceae - genetics</topic><topic>Cucurbitaceae - virology</topic><topic>Developmental stages</topic><topic>Disease resistance</topic><topic>Editing</topic><topic>Efficiency</topic><topic>Eukaryotic Initiation Factor-4E - genetics</topic><topic>Eukaryotic Initiation Factor-4F - metabolism</topic><topic>Eukaryotic Initiation Factor-4G - metabolism</topic><topic>Fertility</topic><topic>Flowers</topic><topic>Fruits</topic><topic>Gametes</topic><topic>Gametogenesis, Plant - genetics</topic><topic>Gene deletion</topic><topic>Gene Editing</topic><topic>Genetic engineering</topic><topic>Genetic translation</topic><topic>Genetically modified plants</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Initiation factor eIF-4E</topic><topic>Initiation factor eIF-4G</topic><topic>Male sterility</topic><topic>Males</topic><topic>mRNA</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Phenotypes</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - virology</topic><topic>Plant Infertility - genetics</topic><topic>Plant Proteins - genetics</topic><topic>Plants (botany)</topic><topic>Pollen</topic><topic>Pollen - genetics</topic><topic>Pollen - growth & development</topic><topic>Potyvirus</topic><topic>potyvirus resistance</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>resistance breaking</topic><topic>RNA</topic><topic>sexual development</topic><topic>Transgenic plants</topic><topic>Translation initiation</topic><topic>Viruses</topic><topic>Water melons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pechar, Giuliano S.</creatorcontrib><creatorcontrib>Donaire, Livia</creatorcontrib><creatorcontrib>Gosalvez, Blanca</creatorcontrib><creatorcontrib>García‐Almodovar, Carlos</creatorcontrib><creatorcontrib>Sánchez‐Pina, María Amelia</creatorcontrib><creatorcontrib>Truniger, Verónica</creatorcontrib><creatorcontrib>Aranda, Miguel A.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pechar, Giuliano S.</au><au>Donaire, Livia</au><au>Gosalvez, Blanca</au><au>García‐Almodovar, Carlos</au><au>Sánchez‐Pina, María Amelia</au><au>Truniger, Verónica</au><au>Aranda, Miguel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Editing melon eIF4E associates with virus resistance and male sterility</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2022-10</date><risdate>2022</risdate><volume>20</volume><issue>10</issue><spage>2006</spage><epage>2022</epage><pages>2006-2022</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Summary
The cap‐binding protein eIF4E, through its interaction with eIF4G, constitutes the core of the eIF4F complex, which plays a key role in the circularization of mRNAs and their subsequent cap‐dependent translation. In addition to its fundamental role in mRNA translation initiation, other functions have been described or suggested for eIF4E, including acting as a proviral factor and participating in sexual development. We used CRISPR/Cas9 genome editing to generate melon eif4e knockout mutant lines. Editing worked efficiently in melon, as we obtained transformed plants with a single‐nucleotide deletion in homozygosis in the first eIF4E exon already in a T0 generation. Edited and non‐transgenic plants of a segregating F2 generation were inoculated with Moroccan watermelon mosaic virus (MWMV); homozygous mutant plants showed virus resistance, while heterozygous and non‐mutant plants were infected, in agreement with our previous results with plants silenced in eIF4E. Interestingly, all homozygous edited plants of the T0 and F2 generations showed a male sterility phenotype, while crossing with wild‐type plants restored fertility, displaying a perfect correlation between the segregation of the male sterility phenotype and the segregation of the eif4e mutation. Morphological comparative analysis of melon male flowers along consecutive developmental stages showed postmeiotic abnormal development for both microsporocytes and tapetum, with clear differences in the timing of tapetum degradation in the mutant versus wild‐type. An RNA‐Seq analysis identified critical genes in pollen development that were down‐regulated in flowers of eif4e/eif4e plants, and suggested that eIF4E‐specific mRNA translation initiation is a limiting factor for male gametes formation in melon.
Resistance to MWMV is associated with eIF4E editing and eif4e knock‐out plants show a post‐meiotic, sporophytic male sterility phenotype.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>35778883</pmid><doi>10.1111/pbi.13885</doi><tpages>2022</tpages><orcidid>https://orcid.org/0000-0001-5989-7148</orcidid><orcidid>https://orcid.org/0000-0002-0828-973X</orcidid><orcidid>https://orcid.org/0000-0002-5454-2994</orcidid><orcidid>https://orcid.org/0000-0003-3457-9156</orcidid><orcidid>https://orcid.org/0000-0002-3648-5666</orcidid><orcidid>https://orcid.org/0000-0002-8504-4541</orcidid><orcidid>https://orcid.org/0000-0001-8221-2434</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2022-10, Vol.20 (10), p.2006-2022 |
issn | 1467-7644 1467-7652 1467-7652 |
language | eng |
recordid | cdi_proquest_miscellaneous_2684095378 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Amino acids Analysis Comparative analysis CRISPR CRISPR-Cas Systems Crop diseases cucurbit Cucurbitaceae - genetics Cucurbitaceae - virology Developmental stages Disease resistance Editing Efficiency Eukaryotic Initiation Factor-4E - genetics Eukaryotic Initiation Factor-4F - metabolism Eukaryotic Initiation Factor-4G - metabolism Fertility Flowers Fruits Gametes Gametogenesis, Plant - genetics Gene deletion Gene Editing Genetic engineering Genetic translation Genetically modified plants Genomes Genomics Genotype & phenotype Initiation factor eIF-4E Initiation factor eIF-4G Male sterility Males mRNA Mutants Mutation Nucleotides Phenotypes Plant Diseases - genetics Plant Diseases - virology Plant Infertility - genetics Plant Proteins - genetics Plants (botany) Pollen Pollen - genetics Pollen - growth & development Potyvirus potyvirus resistance Protein binding Proteins resistance breaking RNA sexual development Transgenic plants Translation initiation Viruses Water melons |
title | Editing melon eIF4E associates with virus resistance and male sterility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Editing%20melon%20eIF4E%20associates%20with%20virus%20resistance%20and%20male%20sterility&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Pechar,%20Giuliano%20S.&rft.date=2022-10&rft.volume=20&rft.issue=10&rft.spage=2006&rft.epage=2022&rft.pages=2006-2022&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13885&rft_dat=%3Cgale_proqu%3EA741530416%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716166897&rft_id=info:pmid/35778883&rft_galeid=A741530416&rfr_iscdi=true |