An intelligent simulation methodology to characterize defects in materials

This paper presents a methodology to detect defects in materials using simulation. Wavelet transform and neural networks are used as feature extraction and classification tools, respectively. We first use the raw signal of the defect as an input to the neural networks. Then, the wavelet transform of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2001-09, Vol.137 (1), p.33-41
Hauptverfasser: Obaidat, M.S., Suhail, M.A., Sadoun, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 33
container_title Information sciences
container_volume 137
creator Obaidat, M.S.
Suhail, M.A.
Sadoun, B.
description This paper presents a methodology to detect defects in materials using simulation. Wavelet transform and neural networks are used as feature extraction and classification tools, respectively. We first use the raw signal of the defect as an input to the neural networks. Then, the wavelet transform of the input defect signature is applied to the neural networks. The results of both methods are analyzed and their performance are compared and discussed. It is found that using Wavelet transform as a pre-clustering scheme before applying data to the neural networks can provide better classification results as compared to the case that does not use it. Our scheme is efficient and accurate.
doi_str_mv 10.1016/S0020-0255(01)00112-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26836194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025501001128</els_id><sourcerecordid>26836194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-4c44da72ff713c36c11c57fe59366a0544d2d04f59d4bff63874273b96254d4d3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QZiV6GL05jGZmZWU4pOCC3Ud0jzayMykJqlQf71pK25dHbj3nAPnQ-gcwzUGzG9eAQiUQKrqEvAVAMakbA7QCDc1KTlp8SEa_VmO0UmMHwDAas5H6HkyFG5IpuvcwgypiK5fdzI5PxS9SUuvfecXmyL5Qi1lkCqZ4L5NoY01KsUcLXq5vckunqIjm8Wc_eoYvd_fvU0fy9nLw9N0MisVpU0qmWJMy5pYW2OqKFcYq6q2pmop5xKq_CUamK1azebWctrUjNR03nJSMc00HaOLfe8q-M-1iUn0Lqq8QA7Gr6MgvKEctywbq71RBR9jMFasgutl2AgMYktO7MiJLRYBWOzIiSbnbvc5k1d8ORNEVM4MymgX8mqhvfun4Qdu1HWG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26836194</pqid></control><display><type>article</type><title>An intelligent simulation methodology to characterize defects in materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Obaidat, M.S. ; Suhail, M.A. ; Sadoun, B.</creator><creatorcontrib>Obaidat, M.S. ; Suhail, M.A. ; Sadoun, B.</creatorcontrib><description>This paper presents a methodology to detect defects in materials using simulation. Wavelet transform and neural networks are used as feature extraction and classification tools, respectively. We first use the raw signal of the defect as an input to the neural networks. Then, the wavelet transform of the input defect signature is applied to the neural networks. The results of both methods are analyzed and their performance are compared and discussed. It is found that using Wavelet transform as a pre-clustering scheme before applying data to the neural networks can provide better classification results as compared to the case that does not use it. Our scheme is efficient and accurate.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/S0020-0255(01)00112-8</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Defect classification ; Material characterization and testing ; Neural networks ; Nondestructive testing ; Wavelet transform</subject><ispartof>Information sciences, 2001-09, Vol.137 (1), p.33-41</ispartof><rights>2001 Elsevier Science Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-4c44da72ff713c36c11c57fe59366a0544d2d04f59d4bff63874273b96254d4d3</citedby><cites>FETCH-LOGICAL-c338t-4c44da72ff713c36c11c57fe59366a0544d2d04f59d4bff63874273b96254d4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025501001128$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Obaidat, M.S.</creatorcontrib><creatorcontrib>Suhail, M.A.</creatorcontrib><creatorcontrib>Sadoun, B.</creatorcontrib><title>An intelligent simulation methodology to characterize defects in materials</title><title>Information sciences</title><description>This paper presents a methodology to detect defects in materials using simulation. Wavelet transform and neural networks are used as feature extraction and classification tools, respectively. We first use the raw signal of the defect as an input to the neural networks. Then, the wavelet transform of the input defect signature is applied to the neural networks. The results of both methods are analyzed and their performance are compared and discussed. It is found that using Wavelet transform as a pre-clustering scheme before applying data to the neural networks can provide better classification results as compared to the case that does not use it. Our scheme is efficient and accurate.</description><subject>Defect classification</subject><subject>Material characterization and testing</subject><subject>Neural networks</subject><subject>Nondestructive testing</subject><subject>Wavelet transform</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QZiV6GL05jGZmZWU4pOCC3Ud0jzayMykJqlQf71pK25dHbj3nAPnQ-gcwzUGzG9eAQiUQKrqEvAVAMakbA7QCDc1KTlp8SEa_VmO0UmMHwDAas5H6HkyFG5IpuvcwgypiK5fdzI5PxS9SUuvfecXmyL5Qi1lkCqZ4L5NoY01KsUcLXq5vckunqIjm8Wc_eoYvd_fvU0fy9nLw9N0MisVpU0qmWJMy5pYW2OqKFcYq6q2pmop5xKq_CUamK1azebWctrUjNR03nJSMc00HaOLfe8q-M-1iUn0Lqq8QA7Gr6MgvKEctywbq71RBR9jMFasgutl2AgMYktO7MiJLRYBWOzIiSbnbvc5k1d8ORNEVM4MymgX8mqhvfun4Qdu1HWG</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Obaidat, M.S.</creator><creator>Suhail, M.A.</creator><creator>Sadoun, B.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20010901</creationdate><title>An intelligent simulation methodology to characterize defects in materials</title><author>Obaidat, M.S. ; Suhail, M.A. ; Sadoun, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-4c44da72ff713c36c11c57fe59366a0544d2d04f59d4bff63874273b96254d4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Defect classification</topic><topic>Material characterization and testing</topic><topic>Neural networks</topic><topic>Nondestructive testing</topic><topic>Wavelet transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obaidat, M.S.</creatorcontrib><creatorcontrib>Suhail, M.A.</creatorcontrib><creatorcontrib>Sadoun, B.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obaidat, M.S.</au><au>Suhail, M.A.</au><au>Sadoun, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intelligent simulation methodology to characterize defects in materials</atitle><jtitle>Information sciences</jtitle><date>2001-09-01</date><risdate>2001</risdate><volume>137</volume><issue>1</issue><spage>33</spage><epage>41</epage><pages>33-41</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper presents a methodology to detect defects in materials using simulation. Wavelet transform and neural networks are used as feature extraction and classification tools, respectively. We first use the raw signal of the defect as an input to the neural networks. Then, the wavelet transform of the input defect signature is applied to the neural networks. The results of both methods are analyzed and their performance are compared and discussed. It is found that using Wavelet transform as a pre-clustering scheme before applying data to the neural networks can provide better classification results as compared to the case that does not use it. Our scheme is efficient and accurate.</abstract><pub>Elsevier Inc</pub><doi>10.1016/S0020-0255(01)00112-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2001-09, Vol.137 (1), p.33-41
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_26836194
source Elsevier ScienceDirect Journals Complete
subjects Defect classification
Material characterization and testing
Neural networks
Nondestructive testing
Wavelet transform
title An intelligent simulation methodology to characterize defects in materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intelligent%20simulation%20methodology%20to%20characterize%20defects%20in%20materials&rft.jtitle=Information%20sciences&rft.au=Obaidat,%20M.S.&rft.date=2001-09-01&rft.volume=137&rft.issue=1&rft.spage=33&rft.epage=41&rft.pages=33-41&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/S0020-0255(01)00112-8&rft_dat=%3Cproquest_cross%3E26836194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26836194&rft_id=info:pmid/&rft_els_id=S0020025501001128&rfr_iscdi=true