An intelligent simulation methodology to characterize defects in materials
This paper presents a methodology to detect defects in materials using simulation. Wavelet transform and neural networks are used as feature extraction and classification tools, respectively. We first use the raw signal of the defect as an input to the neural networks. Then, the wavelet transform of...
Gespeichert in:
Veröffentlicht in: | Information sciences 2001-09, Vol.137 (1), p.33-41 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | Information sciences |
container_volume | 137 |
creator | Obaidat, M.S. Suhail, M.A. Sadoun, B. |
description | This paper presents a methodology to detect defects in materials using simulation. Wavelet transform and neural networks are used as feature extraction and classification tools, respectively. We first use the raw signal of the defect as an input to the neural networks. Then, the wavelet transform of the input defect signature is applied to the neural networks. The results of both methods are analyzed and their performance are compared and discussed. It is found that using Wavelet transform as a pre-clustering scheme before applying data to the neural networks can provide better classification results as compared to the case that does not use it. Our scheme is efficient and accurate. |
doi_str_mv | 10.1016/S0020-0255(01)00112-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26836194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025501001128</els_id><sourcerecordid>26836194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-4c44da72ff713c36c11c57fe59366a0544d2d04f59d4bff63874273b96254d4d3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QZiV6GL05jGZmZWU4pOCC3Ud0jzayMykJqlQf71pK25dHbj3nAPnQ-gcwzUGzG9eAQiUQKrqEvAVAMakbA7QCDc1KTlp8SEa_VmO0UmMHwDAas5H6HkyFG5IpuvcwgypiK5fdzI5PxS9SUuvfecXmyL5Qi1lkCqZ4L5NoY01KsUcLXq5vckunqIjm8Wc_eoYvd_fvU0fy9nLw9N0MisVpU0qmWJMy5pYW2OqKFcYq6q2pmop5xKq_CUamK1azebWctrUjNR03nJSMc00HaOLfe8q-M-1iUn0Lqq8QA7Gr6MgvKEctywbq71RBR9jMFasgutl2AgMYktO7MiJLRYBWOzIiSbnbvc5k1d8ORNEVM4MymgX8mqhvfun4Qdu1HWG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26836194</pqid></control><display><type>article</type><title>An intelligent simulation methodology to characterize defects in materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Obaidat, M.S. ; Suhail, M.A. ; Sadoun, B.</creator><creatorcontrib>Obaidat, M.S. ; Suhail, M.A. ; Sadoun, B.</creatorcontrib><description>This paper presents a methodology to detect defects in materials using simulation. Wavelet transform and neural networks are used as feature extraction and classification tools, respectively. We first use the raw signal of the defect as an input to the neural networks. Then, the wavelet transform of the input defect signature is applied to the neural networks. The results of both methods are analyzed and their performance are compared and discussed. It is found that using Wavelet transform as a pre-clustering scheme before applying data to the neural networks can provide better classification results as compared to the case that does not use it. Our scheme is efficient and accurate.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/S0020-0255(01)00112-8</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Defect classification ; Material characterization and testing ; Neural networks ; Nondestructive testing ; Wavelet transform</subject><ispartof>Information sciences, 2001-09, Vol.137 (1), p.33-41</ispartof><rights>2001 Elsevier Science Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-4c44da72ff713c36c11c57fe59366a0544d2d04f59d4bff63874273b96254d4d3</citedby><cites>FETCH-LOGICAL-c338t-4c44da72ff713c36c11c57fe59366a0544d2d04f59d4bff63874273b96254d4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025501001128$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Obaidat, M.S.</creatorcontrib><creatorcontrib>Suhail, M.A.</creatorcontrib><creatorcontrib>Sadoun, B.</creatorcontrib><title>An intelligent simulation methodology to characterize defects in materials</title><title>Information sciences</title><description>This paper presents a methodology to detect defects in materials using simulation. Wavelet transform and neural networks are used as feature extraction and classification tools, respectively. We first use the raw signal of the defect as an input to the neural networks. Then, the wavelet transform of the input defect signature is applied to the neural networks. The results of both methods are analyzed and their performance are compared and discussed. It is found that using Wavelet transform as a pre-clustering scheme before applying data to the neural networks can provide better classification results as compared to the case that does not use it. Our scheme is efficient and accurate.</description><subject>Defect classification</subject><subject>Material characterization and testing</subject><subject>Neural networks</subject><subject>Nondestructive testing</subject><subject>Wavelet transform</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QZiV6GL05jGZmZWU4pOCC3Ud0jzayMykJqlQf71pK25dHbj3nAPnQ-gcwzUGzG9eAQiUQKrqEvAVAMakbA7QCDc1KTlp8SEa_VmO0UmMHwDAas5H6HkyFG5IpuvcwgypiK5fdzI5PxS9SUuvfecXmyL5Qi1lkCqZ4L5NoY01KsUcLXq5vckunqIjm8Wc_eoYvd_fvU0fy9nLw9N0MisVpU0qmWJMy5pYW2OqKFcYq6q2pmop5xKq_CUamK1azebWctrUjNR03nJSMc00HaOLfe8q-M-1iUn0Lqq8QA7Gr6MgvKEctywbq71RBR9jMFasgutl2AgMYktO7MiJLRYBWOzIiSbnbvc5k1d8ORNEVM4MymgX8mqhvfun4Qdu1HWG</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Obaidat, M.S.</creator><creator>Suhail, M.A.</creator><creator>Sadoun, B.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20010901</creationdate><title>An intelligent simulation methodology to characterize defects in materials</title><author>Obaidat, M.S. ; Suhail, M.A. ; Sadoun, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-4c44da72ff713c36c11c57fe59366a0544d2d04f59d4bff63874273b96254d4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Defect classification</topic><topic>Material characterization and testing</topic><topic>Neural networks</topic><topic>Nondestructive testing</topic><topic>Wavelet transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obaidat, M.S.</creatorcontrib><creatorcontrib>Suhail, M.A.</creatorcontrib><creatorcontrib>Sadoun, B.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obaidat, M.S.</au><au>Suhail, M.A.</au><au>Sadoun, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intelligent simulation methodology to characterize defects in materials</atitle><jtitle>Information sciences</jtitle><date>2001-09-01</date><risdate>2001</risdate><volume>137</volume><issue>1</issue><spage>33</spage><epage>41</epage><pages>33-41</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper presents a methodology to detect defects in materials using simulation. Wavelet transform and neural networks are used as feature extraction and classification tools, respectively. We first use the raw signal of the defect as an input to the neural networks. Then, the wavelet transform of the input defect signature is applied to the neural networks. The results of both methods are analyzed and their performance are compared and discussed. It is found that using Wavelet transform as a pre-clustering scheme before applying data to the neural networks can provide better classification results as compared to the case that does not use it. Our scheme is efficient and accurate.</abstract><pub>Elsevier Inc</pub><doi>10.1016/S0020-0255(01)00112-8</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2001-09, Vol.137 (1), p.33-41 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_26836194 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Defect classification Material characterization and testing Neural networks Nondestructive testing Wavelet transform |
title | An intelligent simulation methodology to characterize defects in materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intelligent%20simulation%20methodology%20to%20characterize%20defects%20in%20materials&rft.jtitle=Information%20sciences&rft.au=Obaidat,%20M.S.&rft.date=2001-09-01&rft.volume=137&rft.issue=1&rft.spage=33&rft.epage=41&rft.pages=33-41&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/S0020-0255(01)00112-8&rft_dat=%3Cproquest_cross%3E26836194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26836194&rft_id=info:pmid/&rft_els_id=S0020025501001128&rfr_iscdi=true |