TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer

Background Noninvasive detection of TP53 mutations is useful for the molecular stratification of breast cancer. Purpose To explore MRI radiomics features reflecting TP53 mutations in breast cancer and propose a classifier for detecting such mutations. Study Type Retrospective. Population/Subjects A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2023-04, Vol.57 (4), p.1095-1103
Hauptverfasser: Sun, Kun, Zhu, Hong, Chai, Weimin, Yan, Fuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1103
container_issue 4
container_start_page 1095
container_title Journal of magnetic resonance imaging
container_volume 57
creator Sun, Kun
Zhu, Hong
Chai, Weimin
Yan, Fuhua
description Background Noninvasive detection of TP53 mutations is useful for the molecular stratification of breast cancer. Purpose To explore MRI radiomics features reflecting TP53 mutations in breast cancer and propose a classifier for detecting such mutations. Study Type Retrospective. Population/Subjects A total of 139 breast cancer patients with TP53 expression profiling (98 with TP53 mutations and 41 without TP53 mutations). Field Strength/Sequence 1.5 T, T1‐weighted (T1W) DCE‐MRI. Assessment Lesions were manually segmented using subtracted T1WI. A total of 944 radiomics features (including 744 wavelet‐related features) and 7 clinicopathological features were extracted from each lesion. Principal component analysis and Pearson's correlation analysis were used to preprocess the features. Linear discriminant analysis, logistic regression (LR), support vector machine (SVM), and random forest (RF) were used as the classifiers. Statistical Tests Analysis of variance, Kruskal–Wallis and recursive features elimination were used to select features. Receiver operating characteristic (ROC) analysis was performed to compare the diagnostic accuracy. Results For the radiomics model, the validation cohorts AUCs of the four classifiers ranged from 0.69 (RF) to 0.74 (LR), and LR (0.74) attained the highest AUCs. For the clinicopathological–radiomics combined model, the validation AUCs of the four classifiers ranged from 0.68 (RF) to 0.86 (SVM), and SVM (0.86) attained highest AUCs. In the subgroup analysis of triple‐negative (TN) and luminal type breast cancer, RF achieved the highest AUCs (0.83 and 0.94). Data Conclusion Clinicopathological–radiomics combined model with SVM could be used as noninvasive biomarkers for predicting TP53 mutations. RF was recommended for the detection of TP53 mutations in TN and luminal type breast cancer. Level of Evidence 3 Technical Efficacy Stage 2.
doi_str_mv 10.1002/jmri.28323
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2682783037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785203844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3933-ee70c9ea76b77f19753135a4803ac87e7af64da30d041ec60642e6560ee7cba13</originalsourceid><addsrcrecordid>eNp9kM1LwzAYh4Mobk4v_gFS8CJC55uk-ehxG_NjbChjnkOWptDRrjNpkf33ZnZ68OApv8PzPpAHoWsMQwxAHjaVK4ZEUkJPUB8zQmLCJD8NGxiNsQTRQxfebwAgTRN2jnqUCYEFgT6ard4YjRZto5ui3kZT3xRVN8fa2ywKY7F8iZY6K-qqMD4abXW594WP8tpFY2e1b6KJ3hrrLtFZrktvr47vAL0_TleT53j--vQyGc1jQ1NKY2sFmNRqwddC5DgVjGLKdCKBaiOFFTrnSaYpZJBgazjwhFjOOIRDs9aYDtBd5925-qO1vlFV4Y0tS721desV4ZIISYGKgN7-QTd168IPAiUkI0BlkgTqvqOMq713Nlc7Fyq4vcKgDoXVobD6Lhzgm6OyXVc2-0V_kgYAd8BnUdr9Pyo1C2U76Rf32YNp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785203844</pqid></control><display><type>article</type><title>TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Sun, Kun ; Zhu, Hong ; Chai, Weimin ; Yan, Fuhua</creator><creatorcontrib>Sun, Kun ; Zhu, Hong ; Chai, Weimin ; Yan, Fuhua</creatorcontrib><description>Background Noninvasive detection of TP53 mutations is useful for the molecular stratification of breast cancer. Purpose To explore MRI radiomics features reflecting TP53 mutations in breast cancer and propose a classifier for detecting such mutations. Study Type Retrospective. Population/Subjects A total of 139 breast cancer patients with TP53 expression profiling (98 with TP53 mutations and 41 without TP53 mutations). Field Strength/Sequence 1.5 T, T1‐weighted (T1W) DCE‐MRI. Assessment Lesions were manually segmented using subtracted T1WI. A total of 944 radiomics features (including 744 wavelet‐related features) and 7 clinicopathological features were extracted from each lesion. Principal component analysis and Pearson's correlation analysis were used to preprocess the features. Linear discriminant analysis, logistic regression (LR), support vector machine (SVM), and random forest (RF) were used as the classifiers. Statistical Tests Analysis of variance, Kruskal–Wallis and recursive features elimination were used to select features. Receiver operating characteristic (ROC) analysis was performed to compare the diagnostic accuracy. Results For the radiomics model, the validation cohorts AUCs of the four classifiers ranged from 0.69 (RF) to 0.74 (LR), and LR (0.74) attained the highest AUCs. For the clinicopathological–radiomics combined model, the validation AUCs of the four classifiers ranged from 0.68 (RF) to 0.86 (SVM), and SVM (0.86) attained highest AUCs. In the subgroup analysis of triple‐negative (TN) and luminal type breast cancer, RF achieved the highest AUCs (0.83 and 0.94). Data Conclusion Clinicopathological–radiomics combined model with SVM could be used as noninvasive biomarkers for predicting TP53 mutations. RF was recommended for the detection of TP53 mutations in TN and luminal type breast cancer. Level of Evidence 3 Technical Efficacy Stage 2.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.28323</identifier><identifier>PMID: 35771720</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Biomarkers ; Breast cancer ; Breast Neoplasms ; Classifiers ; Correlation analysis ; Discriminant analysis ; Feature extraction ; Female ; Field strength ; Humans ; Lesions ; machine learning ; Magnetic Resonance Imaging ; Mutation ; Population studies ; Principal components analysis ; Radiomics ; Retrospective Studies ; ROC Curve ; Statistical analysis ; Statistical tests ; Subgroups ; Support vector machines ; Tumor Suppressor Protein p53 ; Variance analysis</subject><ispartof>Journal of magnetic resonance imaging, 2023-04, Vol.57 (4), p.1095-1103</ispartof><rights>2022 International Society for Magnetic Resonance in Medicine.</rights><rights>2023 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3933-ee70c9ea76b77f19753135a4803ac87e7af64da30d041ec60642e6560ee7cba13</citedby><cites>FETCH-LOGICAL-c3933-ee70c9ea76b77f19753135a4803ac87e7af64da30d041ec60642e6560ee7cba13</cites><orcidid>0000-0002-8969-703X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.28323$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.28323$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35771720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Kun</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Chai, Weimin</creatorcontrib><creatorcontrib>Yan, Fuhua</creatorcontrib><title>TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Noninvasive detection of TP53 mutations is useful for the molecular stratification of breast cancer. Purpose To explore MRI radiomics features reflecting TP53 mutations in breast cancer and propose a classifier for detecting such mutations. Study Type Retrospective. Population/Subjects A total of 139 breast cancer patients with TP53 expression profiling (98 with TP53 mutations and 41 without TP53 mutations). Field Strength/Sequence 1.5 T, T1‐weighted (T1W) DCE‐MRI. Assessment Lesions were manually segmented using subtracted T1WI. A total of 944 radiomics features (including 744 wavelet‐related features) and 7 clinicopathological features were extracted from each lesion. Principal component analysis and Pearson's correlation analysis were used to preprocess the features. Linear discriminant analysis, logistic regression (LR), support vector machine (SVM), and random forest (RF) were used as the classifiers. Statistical Tests Analysis of variance, Kruskal–Wallis and recursive features elimination were used to select features. Receiver operating characteristic (ROC) analysis was performed to compare the diagnostic accuracy. Results For the radiomics model, the validation cohorts AUCs of the four classifiers ranged from 0.69 (RF) to 0.74 (LR), and LR (0.74) attained the highest AUCs. For the clinicopathological–radiomics combined model, the validation AUCs of the four classifiers ranged from 0.68 (RF) to 0.86 (SVM), and SVM (0.86) attained highest AUCs. In the subgroup analysis of triple‐negative (TN) and luminal type breast cancer, RF achieved the highest AUCs (0.83 and 0.94). Data Conclusion Clinicopathological–radiomics combined model with SVM could be used as noninvasive biomarkers for predicting TP53 mutations. RF was recommended for the detection of TP53 mutations in TN and luminal type breast cancer. Level of Evidence 3 Technical Efficacy Stage 2.</description><subject>Biomarkers</subject><subject>Breast cancer</subject><subject>Breast Neoplasms</subject><subject>Classifiers</subject><subject>Correlation analysis</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Field strength</subject><subject>Humans</subject><subject>Lesions</subject><subject>machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Mutation</subject><subject>Population studies</subject><subject>Principal components analysis</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Subgroups</subject><subject>Support vector machines</subject><subject>Tumor Suppressor Protein p53</subject><subject>Variance analysis</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1LwzAYh4Mobk4v_gFS8CJC55uk-ehxG_NjbChjnkOWptDRrjNpkf33ZnZ68OApv8PzPpAHoWsMQwxAHjaVK4ZEUkJPUB8zQmLCJD8NGxiNsQTRQxfebwAgTRN2jnqUCYEFgT6ard4YjRZto5ui3kZT3xRVN8fa2ywKY7F8iZY6K-qqMD4abXW594WP8tpFY2e1b6KJ3hrrLtFZrktvr47vAL0_TleT53j--vQyGc1jQ1NKY2sFmNRqwddC5DgVjGLKdCKBaiOFFTrnSaYpZJBgazjwhFjOOIRDs9aYDtBd5925-qO1vlFV4Y0tS721desV4ZIISYGKgN7-QTd168IPAiUkI0BlkgTqvqOMq713Nlc7Fyq4vcKgDoXVobD6Lhzgm6OyXVc2-0V_kgYAd8BnUdr9Pyo1C2U76Rf32YNp</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Sun, Kun</creator><creator>Zhu, Hong</creator><creator>Chai, Weimin</creator><creator>Yan, Fuhua</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8969-703X</orcidid></search><sort><creationdate>202304</creationdate><title>TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer</title><author>Sun, Kun ; Zhu, Hong ; Chai, Weimin ; Yan, Fuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3933-ee70c9ea76b77f19753135a4803ac87e7af64da30d041ec60642e6560ee7cba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Breast cancer</topic><topic>Breast Neoplasms</topic><topic>Classifiers</topic><topic>Correlation analysis</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Field strength</topic><topic>Humans</topic><topic>Lesions</topic><topic>machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Mutation</topic><topic>Population studies</topic><topic>Principal components analysis</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Subgroups</topic><topic>Support vector machines</topic><topic>Tumor Suppressor Protein p53</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Kun</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Chai, Weimin</creatorcontrib><creatorcontrib>Yan, Fuhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Kun</au><au>Zhu, Hong</au><au>Chai, Weimin</au><au>Yan, Fuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2023-04</date><risdate>2023</risdate><volume>57</volume><issue>4</issue><spage>1095</spage><epage>1103</epage><pages>1095-1103</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Noninvasive detection of TP53 mutations is useful for the molecular stratification of breast cancer. Purpose To explore MRI radiomics features reflecting TP53 mutations in breast cancer and propose a classifier for detecting such mutations. Study Type Retrospective. Population/Subjects A total of 139 breast cancer patients with TP53 expression profiling (98 with TP53 mutations and 41 without TP53 mutations). Field Strength/Sequence 1.5 T, T1‐weighted (T1W) DCE‐MRI. Assessment Lesions were manually segmented using subtracted T1WI. A total of 944 radiomics features (including 744 wavelet‐related features) and 7 clinicopathological features were extracted from each lesion. Principal component analysis and Pearson's correlation analysis were used to preprocess the features. Linear discriminant analysis, logistic regression (LR), support vector machine (SVM), and random forest (RF) were used as the classifiers. Statistical Tests Analysis of variance, Kruskal–Wallis and recursive features elimination were used to select features. Receiver operating characteristic (ROC) analysis was performed to compare the diagnostic accuracy. Results For the radiomics model, the validation cohorts AUCs of the four classifiers ranged from 0.69 (RF) to 0.74 (LR), and LR (0.74) attained the highest AUCs. For the clinicopathological–radiomics combined model, the validation AUCs of the four classifiers ranged from 0.68 (RF) to 0.86 (SVM), and SVM (0.86) attained highest AUCs. In the subgroup analysis of triple‐negative (TN) and luminal type breast cancer, RF achieved the highest AUCs (0.83 and 0.94). Data Conclusion Clinicopathological–radiomics combined model with SVM could be used as noninvasive biomarkers for predicting TP53 mutations. RF was recommended for the detection of TP53 mutations in TN and luminal type breast cancer. Level of Evidence 3 Technical Efficacy Stage 2.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35771720</pmid><doi>10.1002/jmri.28323</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8969-703X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2023-04, Vol.57 (4), p.1095-1103
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2682783037
source MEDLINE; Access via Wiley Online Library
subjects Biomarkers
Breast cancer
Breast Neoplasms
Classifiers
Correlation analysis
Discriminant analysis
Feature extraction
Female
Field strength
Humans
Lesions
machine learning
Magnetic Resonance Imaging
Mutation
Population studies
Principal components analysis
Radiomics
Retrospective Studies
ROC Curve
Statistical analysis
Statistical tests
Subgroups
Support vector machines
Tumor Suppressor Protein p53
Variance analysis
title TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TP53%20Mutation%20Estimation%20Based%20on%20MRI%20Radiomics%20Analysis%20for%20Breast%20Cancer&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Sun,%20Kun&rft.date=2023-04&rft.volume=57&rft.issue=4&rft.spage=1095&rft.epage=1103&rft.pages=1095-1103&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.28323&rft_dat=%3Cproquest_cross%3E2785203844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785203844&rft_id=info:pmid/35771720&rfr_iscdi=true