TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer
Background Noninvasive detection of TP53 mutations is useful for the molecular stratification of breast cancer. Purpose To explore MRI radiomics features reflecting TP53 mutations in breast cancer and propose a classifier for detecting such mutations. Study Type Retrospective. Population/Subjects A...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2023-04, Vol.57 (4), p.1095-1103 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1103 |
---|---|
container_issue | 4 |
container_start_page | 1095 |
container_title | Journal of magnetic resonance imaging |
container_volume | 57 |
creator | Sun, Kun Zhu, Hong Chai, Weimin Yan, Fuhua |
description | Background
Noninvasive detection of TP53 mutations is useful for the molecular stratification of breast cancer.
Purpose
To explore MRI radiomics features reflecting TP53 mutations in breast cancer and propose a classifier for detecting such mutations.
Study Type
Retrospective.
Population/Subjects
A total of 139 breast cancer patients with TP53 expression profiling (98 with TP53 mutations and 41 without TP53 mutations).
Field Strength/Sequence
1.5 T, T1‐weighted (T1W) DCE‐MRI.
Assessment
Lesions were manually segmented using subtracted T1WI. A total of 944 radiomics features (including 744 wavelet‐related features) and 7 clinicopathological features were extracted from each lesion. Principal component analysis and Pearson's correlation analysis were used to preprocess the features. Linear discriminant analysis, logistic regression (LR), support vector machine (SVM), and random forest (RF) were used as the classifiers.
Statistical Tests
Analysis of variance, Kruskal–Wallis and recursive features elimination were used to select features. Receiver operating characteristic (ROC) analysis was performed to compare the diagnostic accuracy.
Results
For the radiomics model, the validation cohorts AUCs of the four classifiers ranged from 0.69 (RF) to 0.74 (LR), and LR (0.74) attained the highest AUCs. For the clinicopathological–radiomics combined model, the validation AUCs of the four classifiers ranged from 0.68 (RF) to 0.86 (SVM), and SVM (0.86) attained highest AUCs. In the subgroup analysis of triple‐negative (TN) and luminal type breast cancer, RF achieved the highest AUCs (0.83 and 0.94).
Data Conclusion
Clinicopathological–radiomics combined model with SVM could be used as noninvasive biomarkers for predicting TP53 mutations. RF was recommended for the detection of TP53 mutations in TN and luminal type breast cancer.
Level of Evidence
3
Technical Efficacy
Stage 2. |
doi_str_mv | 10.1002/jmri.28323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2682783037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785203844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3933-ee70c9ea76b77f19753135a4803ac87e7af64da30d041ec60642e6560ee7cba13</originalsourceid><addsrcrecordid>eNp9kM1LwzAYh4Mobk4v_gFS8CJC55uk-ehxG_NjbChjnkOWptDRrjNpkf33ZnZ68OApv8PzPpAHoWsMQwxAHjaVK4ZEUkJPUB8zQmLCJD8NGxiNsQTRQxfebwAgTRN2jnqUCYEFgT6ard4YjRZto5ui3kZT3xRVN8fa2ywKY7F8iZY6K-qqMD4abXW594WP8tpFY2e1b6KJ3hrrLtFZrktvr47vAL0_TleT53j--vQyGc1jQ1NKY2sFmNRqwddC5DgVjGLKdCKBaiOFFTrnSaYpZJBgazjwhFjOOIRDs9aYDtBd5925-qO1vlFV4Y0tS721desV4ZIISYGKgN7-QTd168IPAiUkI0BlkgTqvqOMq713Nlc7Fyq4vcKgDoXVobD6Lhzgm6OyXVc2-0V_kgYAd8BnUdr9Pyo1C2U76Rf32YNp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785203844</pqid></control><display><type>article</type><title>TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Sun, Kun ; Zhu, Hong ; Chai, Weimin ; Yan, Fuhua</creator><creatorcontrib>Sun, Kun ; Zhu, Hong ; Chai, Weimin ; Yan, Fuhua</creatorcontrib><description>Background
Noninvasive detection of TP53 mutations is useful for the molecular stratification of breast cancer.
Purpose
To explore MRI radiomics features reflecting TP53 mutations in breast cancer and propose a classifier for detecting such mutations.
Study Type
Retrospective.
Population/Subjects
A total of 139 breast cancer patients with TP53 expression profiling (98 with TP53 mutations and 41 without TP53 mutations).
Field Strength/Sequence
1.5 T, T1‐weighted (T1W) DCE‐MRI.
Assessment
Lesions were manually segmented using subtracted T1WI. A total of 944 radiomics features (including 744 wavelet‐related features) and 7 clinicopathological features were extracted from each lesion. Principal component analysis and Pearson's correlation analysis were used to preprocess the features. Linear discriminant analysis, logistic regression (LR), support vector machine (SVM), and random forest (RF) were used as the classifiers.
Statistical Tests
Analysis of variance, Kruskal–Wallis and recursive features elimination were used to select features. Receiver operating characteristic (ROC) analysis was performed to compare the diagnostic accuracy.
Results
For the radiomics model, the validation cohorts AUCs of the four classifiers ranged from 0.69 (RF) to 0.74 (LR), and LR (0.74) attained the highest AUCs. For the clinicopathological–radiomics combined model, the validation AUCs of the four classifiers ranged from 0.68 (RF) to 0.86 (SVM), and SVM (0.86) attained highest AUCs. In the subgroup analysis of triple‐negative (TN) and luminal type breast cancer, RF achieved the highest AUCs (0.83 and 0.94).
Data Conclusion
Clinicopathological–radiomics combined model with SVM could be used as noninvasive biomarkers for predicting TP53 mutations. RF was recommended for the detection of TP53 mutations in TN and luminal type breast cancer.
Level of Evidence
3
Technical Efficacy
Stage 2.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.28323</identifier><identifier>PMID: 35771720</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Biomarkers ; Breast cancer ; Breast Neoplasms ; Classifiers ; Correlation analysis ; Discriminant analysis ; Feature extraction ; Female ; Field strength ; Humans ; Lesions ; machine learning ; Magnetic Resonance Imaging ; Mutation ; Population studies ; Principal components analysis ; Radiomics ; Retrospective Studies ; ROC Curve ; Statistical analysis ; Statistical tests ; Subgroups ; Support vector machines ; Tumor Suppressor Protein p53 ; Variance analysis</subject><ispartof>Journal of magnetic resonance imaging, 2023-04, Vol.57 (4), p.1095-1103</ispartof><rights>2022 International Society for Magnetic Resonance in Medicine.</rights><rights>2023 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3933-ee70c9ea76b77f19753135a4803ac87e7af64da30d041ec60642e6560ee7cba13</citedby><cites>FETCH-LOGICAL-c3933-ee70c9ea76b77f19753135a4803ac87e7af64da30d041ec60642e6560ee7cba13</cites><orcidid>0000-0002-8969-703X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.28323$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.28323$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35771720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Kun</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Chai, Weimin</creatorcontrib><creatorcontrib>Yan, Fuhua</creatorcontrib><title>TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background
Noninvasive detection of TP53 mutations is useful for the molecular stratification of breast cancer.
Purpose
To explore MRI radiomics features reflecting TP53 mutations in breast cancer and propose a classifier for detecting such mutations.
Study Type
Retrospective.
Population/Subjects
A total of 139 breast cancer patients with TP53 expression profiling (98 with TP53 mutations and 41 without TP53 mutations).
Field Strength/Sequence
1.5 T, T1‐weighted (T1W) DCE‐MRI.
Assessment
Lesions were manually segmented using subtracted T1WI. A total of 944 radiomics features (including 744 wavelet‐related features) and 7 clinicopathological features were extracted from each lesion. Principal component analysis and Pearson's correlation analysis were used to preprocess the features. Linear discriminant analysis, logistic regression (LR), support vector machine (SVM), and random forest (RF) were used as the classifiers.
Statistical Tests
Analysis of variance, Kruskal–Wallis and recursive features elimination were used to select features. Receiver operating characteristic (ROC) analysis was performed to compare the diagnostic accuracy.
Results
For the radiomics model, the validation cohorts AUCs of the four classifiers ranged from 0.69 (RF) to 0.74 (LR), and LR (0.74) attained the highest AUCs. For the clinicopathological–radiomics combined model, the validation AUCs of the four classifiers ranged from 0.68 (RF) to 0.86 (SVM), and SVM (0.86) attained highest AUCs. In the subgroup analysis of triple‐negative (TN) and luminal type breast cancer, RF achieved the highest AUCs (0.83 and 0.94).
Data Conclusion
Clinicopathological–radiomics combined model with SVM could be used as noninvasive biomarkers for predicting TP53 mutations. RF was recommended for the detection of TP53 mutations in TN and luminal type breast cancer.
Level of Evidence
3
Technical Efficacy
Stage 2.</description><subject>Biomarkers</subject><subject>Breast cancer</subject><subject>Breast Neoplasms</subject><subject>Classifiers</subject><subject>Correlation analysis</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Field strength</subject><subject>Humans</subject><subject>Lesions</subject><subject>machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Mutation</subject><subject>Population studies</subject><subject>Principal components analysis</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Subgroups</subject><subject>Support vector machines</subject><subject>Tumor Suppressor Protein p53</subject><subject>Variance analysis</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1LwzAYh4Mobk4v_gFS8CJC55uk-ehxG_NjbChjnkOWptDRrjNpkf33ZnZ68OApv8PzPpAHoWsMQwxAHjaVK4ZEUkJPUB8zQmLCJD8NGxiNsQTRQxfebwAgTRN2jnqUCYEFgT6ard4YjRZto5ui3kZT3xRVN8fa2ywKY7F8iZY6K-qqMD4abXW594WP8tpFY2e1b6KJ3hrrLtFZrktvr47vAL0_TleT53j--vQyGc1jQ1NKY2sFmNRqwddC5DgVjGLKdCKBaiOFFTrnSaYpZJBgazjwhFjOOIRDs9aYDtBd5925-qO1vlFV4Y0tS721desV4ZIISYGKgN7-QTd168IPAiUkI0BlkgTqvqOMq713Nlc7Fyq4vcKgDoXVobD6Lhzgm6OyXVc2-0V_kgYAd8BnUdr9Pyo1C2U76Rf32YNp</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Sun, Kun</creator><creator>Zhu, Hong</creator><creator>Chai, Weimin</creator><creator>Yan, Fuhua</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8969-703X</orcidid></search><sort><creationdate>202304</creationdate><title>TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer</title><author>Sun, Kun ; Zhu, Hong ; Chai, Weimin ; Yan, Fuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3933-ee70c9ea76b77f19753135a4803ac87e7af64da30d041ec60642e6560ee7cba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Breast cancer</topic><topic>Breast Neoplasms</topic><topic>Classifiers</topic><topic>Correlation analysis</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Field strength</topic><topic>Humans</topic><topic>Lesions</topic><topic>machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Mutation</topic><topic>Population studies</topic><topic>Principal components analysis</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Subgroups</topic><topic>Support vector machines</topic><topic>Tumor Suppressor Protein p53</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Kun</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Chai, Weimin</creatorcontrib><creatorcontrib>Yan, Fuhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Kun</au><au>Zhu, Hong</au><au>Chai, Weimin</au><au>Yan, Fuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2023-04</date><risdate>2023</risdate><volume>57</volume><issue>4</issue><spage>1095</spage><epage>1103</epage><pages>1095-1103</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background
Noninvasive detection of TP53 mutations is useful for the molecular stratification of breast cancer.
Purpose
To explore MRI radiomics features reflecting TP53 mutations in breast cancer and propose a classifier for detecting such mutations.
Study Type
Retrospective.
Population/Subjects
A total of 139 breast cancer patients with TP53 expression profiling (98 with TP53 mutations and 41 without TP53 mutations).
Field Strength/Sequence
1.5 T, T1‐weighted (T1W) DCE‐MRI.
Assessment
Lesions were manually segmented using subtracted T1WI. A total of 944 radiomics features (including 744 wavelet‐related features) and 7 clinicopathological features were extracted from each lesion. Principal component analysis and Pearson's correlation analysis were used to preprocess the features. Linear discriminant analysis, logistic regression (LR), support vector machine (SVM), and random forest (RF) were used as the classifiers.
Statistical Tests
Analysis of variance, Kruskal–Wallis and recursive features elimination were used to select features. Receiver operating characteristic (ROC) analysis was performed to compare the diagnostic accuracy.
Results
For the radiomics model, the validation cohorts AUCs of the four classifiers ranged from 0.69 (RF) to 0.74 (LR), and LR (0.74) attained the highest AUCs. For the clinicopathological–radiomics combined model, the validation AUCs of the four classifiers ranged from 0.68 (RF) to 0.86 (SVM), and SVM (0.86) attained highest AUCs. In the subgroup analysis of triple‐negative (TN) and luminal type breast cancer, RF achieved the highest AUCs (0.83 and 0.94).
Data Conclusion
Clinicopathological–radiomics combined model with SVM could be used as noninvasive biomarkers for predicting TP53 mutations. RF was recommended for the detection of TP53 mutations in TN and luminal type breast cancer.
Level of Evidence
3
Technical Efficacy
Stage 2.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>35771720</pmid><doi>10.1002/jmri.28323</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8969-703X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2023-04, Vol.57 (4), p.1095-1103 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_proquest_miscellaneous_2682783037 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Biomarkers Breast cancer Breast Neoplasms Classifiers Correlation analysis Discriminant analysis Feature extraction Female Field strength Humans Lesions machine learning Magnetic Resonance Imaging Mutation Population studies Principal components analysis Radiomics Retrospective Studies ROC Curve Statistical analysis Statistical tests Subgroups Support vector machines Tumor Suppressor Protein p53 Variance analysis |
title | TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TP53%20Mutation%20Estimation%20Based%20on%20MRI%20Radiomics%20Analysis%20for%20Breast%20Cancer&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Sun,%20Kun&rft.date=2023-04&rft.volume=57&rft.issue=4&rft.spage=1095&rft.epage=1103&rft.pages=1095-1103&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.28323&rft_dat=%3Cproquest_cross%3E2785203844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785203844&rft_id=info:pmid/35771720&rfr_iscdi=true |