Movement of impingement heat transfer by a single circular jet with a confined wall
Impingement heat transfer and flow in the radial and circumferential directions by a single circular laminar jet in a flow passage with a confined insulated wall were estimated numerically in a three-dimensional system and were recognized by visualization of a thermosensitive liquid crystal. Local h...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2001-08, Vol.44 (16), p.3095-3102 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3102 |
---|---|
container_issue | 16 |
container_start_page | 3095 |
container_title | International journal of heat and mass transfer |
container_volume | 44 |
creator | Ichimiya, Koichi Takema, Shoichi Morimoto, Shunichi Kunugi, Tomoaki Akino, Norio |
description | Impingement heat transfer and flow in the radial and circumferential directions by a single circular laminar jet in a flow passage with a confined insulated wall were estimated numerically in a three-dimensional system and were recognized by visualization of a thermosensitive liquid crystal. Local heat transfer is divided into three regions. The first is a two-dimensional forced convection region whose structure is a co-axial circle. The second laminar mixed-convection region begins with the onset of a buoyancy driven flow, which corresponds to thermal plumes rising from the heated impingement surface at discrete circumferential locations. The ascending and descending pair flows form longitudinal streak lines in the mixed convection region. The number of pairs is found to depend on the aspect ratio of circumferential length and distance between nozzle and impingement surface. The third is a three-dimensional natural convection region similar to Benard convection which constructs several cells. The radial Nusselt number distribution averaged along the circumferential direction is also presented corresponding to the flow. |
doi_str_mv | 10.1016/S0017-9310(00)00341-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26826805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931000003410</els_id><sourcerecordid>26826805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-e9930dafab12e4751fa7c9c43cd3195bced98eddd329eee6f24272f422882a203</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchBRA-rSfYzJ5HiF1Q8VM8hTSY2Jbtbk21L_71Zt4g3YSAM8yTv5EHonJIbSmhxOyOElglPKbki5JqQNKMJOUAjWpU8YbTih2j0ixyjkxCWfUuyYoRmr-0Gamg63Bps65VtPod2AbLDnZdNMODxfIclDnHoACvr1dpJj5fQ4a3tFnGk2sbYBjTeSudO0ZGRLsDZ_hyjj8eH98lzMn17epncTxOVUdolwHlKtDRyThlkZU6NLBVXWap0Snk-V6B5BVrrlHEAKAzLWMlMxlhVMclIOkaXw7sr336tIXSitkGBc7KBdh0EK6pYJI9gPoDKtyF4MGLlbS39TlAieoXiR6Ho_QjSV1Qo-oCLfYAMSjoTbSgb_lxmRVmVEbsbMIif3VjwIigLTdzfelCd0K39J-gbsRmFcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26826805</pqid></control><display><type>article</type><title>Movement of impingement heat transfer by a single circular jet with a confined wall</title><source>Elsevier ScienceDirect Journals</source><creator>Ichimiya, Koichi ; Takema, Shoichi ; Morimoto, Shunichi ; Kunugi, Tomoaki ; Akino, Norio</creator><creatorcontrib>Ichimiya, Koichi ; Takema, Shoichi ; Morimoto, Shunichi ; Kunugi, Tomoaki ; Akino, Norio</creatorcontrib><description>Impingement heat transfer and flow in the radial and circumferential directions by a single circular laminar jet in a flow passage with a confined insulated wall were estimated numerically in a three-dimensional system and were recognized by visualization of a thermosensitive liquid crystal. Local heat transfer is divided into three regions. The first is a two-dimensional forced convection region whose structure is a co-axial circle. The second laminar mixed-convection region begins with the onset of a buoyancy driven flow, which corresponds to thermal plumes rising from the heated impingement surface at discrete circumferential locations. The ascending and descending pair flows form longitudinal streak lines in the mixed convection region. The number of pairs is found to depend on the aspect ratio of circumferential length and distance between nozzle and impingement surface. The third is a three-dimensional natural convection region similar to Benard convection which constructs several cells. The radial Nusselt number distribution averaged along the circumferential direction is also presented corresponding to the flow.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/S0017-9310(00)00341-0</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Convection and heat transfer ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Jets ; Physics ; Turbulent flows, convection, and heat transfer</subject><ispartof>International journal of heat and mass transfer, 2001-08, Vol.44 (16), p.3095-3102</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-e9930dafab12e4751fa7c9c43cd3195bced98eddd329eee6f24272f422882a203</citedby><cites>FETCH-LOGICAL-c411t-e9930dafab12e4751fa7c9c43cd3195bced98eddd329eee6f24272f422882a203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931000003410$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1026787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ichimiya, Koichi</creatorcontrib><creatorcontrib>Takema, Shoichi</creatorcontrib><creatorcontrib>Morimoto, Shunichi</creatorcontrib><creatorcontrib>Kunugi, Tomoaki</creatorcontrib><creatorcontrib>Akino, Norio</creatorcontrib><title>Movement of impingement heat transfer by a single circular jet with a confined wall</title><title>International journal of heat and mass transfer</title><description>Impingement heat transfer and flow in the radial and circumferential directions by a single circular laminar jet in a flow passage with a confined insulated wall were estimated numerically in a three-dimensional system and were recognized by visualization of a thermosensitive liquid crystal. Local heat transfer is divided into three regions. The first is a two-dimensional forced convection region whose structure is a co-axial circle. The second laminar mixed-convection region begins with the onset of a buoyancy driven flow, which corresponds to thermal plumes rising from the heated impingement surface at discrete circumferential locations. The ascending and descending pair flows form longitudinal streak lines in the mixed convection region. The number of pairs is found to depend on the aspect ratio of circumferential length and distance between nozzle and impingement surface. The third is a three-dimensional natural convection region similar to Benard convection which constructs several cells. The radial Nusselt number distribution averaged along the circumferential direction is also presented corresponding to the flow.</description><subject>Convection and heat transfer</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Jets</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchBRA-rSfYzJ5HiF1Q8VM8hTSY2Jbtbk21L_71Zt4g3YSAM8yTv5EHonJIbSmhxOyOElglPKbki5JqQNKMJOUAjWpU8YbTih2j0ixyjkxCWfUuyYoRmr-0Gamg63Bps65VtPod2AbLDnZdNMODxfIclDnHoACvr1dpJj5fQ4a3tFnGk2sbYBjTeSudO0ZGRLsDZ_hyjj8eH98lzMn17epncTxOVUdolwHlKtDRyThlkZU6NLBVXWap0Snk-V6B5BVrrlHEAKAzLWMlMxlhVMclIOkaXw7sr336tIXSitkGBc7KBdh0EK6pYJI9gPoDKtyF4MGLlbS39TlAieoXiR6Ho_QjSV1Qo-oCLfYAMSjoTbSgb_lxmRVmVEbsbMIif3VjwIigLTdzfelCd0K39J-gbsRmFcw</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Ichimiya, Koichi</creator><creator>Takema, Shoichi</creator><creator>Morimoto, Shunichi</creator><creator>Kunugi, Tomoaki</creator><creator>Akino, Norio</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20010801</creationdate><title>Movement of impingement heat transfer by a single circular jet with a confined wall</title><author>Ichimiya, Koichi ; Takema, Shoichi ; Morimoto, Shunichi ; Kunugi, Tomoaki ; Akino, Norio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-e9930dafab12e4751fa7c9c43cd3195bced98eddd329eee6f24272f422882a203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Convection and heat transfer</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Jets</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ichimiya, Koichi</creatorcontrib><creatorcontrib>Takema, Shoichi</creatorcontrib><creatorcontrib>Morimoto, Shunichi</creatorcontrib><creatorcontrib>Kunugi, Tomoaki</creatorcontrib><creatorcontrib>Akino, Norio</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ichimiya, Koichi</au><au>Takema, Shoichi</au><au>Morimoto, Shunichi</au><au>Kunugi, Tomoaki</au><au>Akino, Norio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Movement of impingement heat transfer by a single circular jet with a confined wall</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>44</volume><issue>16</issue><spage>3095</spage><epage>3102</epage><pages>3095-3102</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>Impingement heat transfer and flow in the radial and circumferential directions by a single circular laminar jet in a flow passage with a confined insulated wall were estimated numerically in a three-dimensional system and were recognized by visualization of a thermosensitive liquid crystal. Local heat transfer is divided into three regions. The first is a two-dimensional forced convection region whose structure is a co-axial circle. The second laminar mixed-convection region begins with the onset of a buoyancy driven flow, which corresponds to thermal plumes rising from the heated impingement surface at discrete circumferential locations. The ascending and descending pair flows form longitudinal streak lines in the mixed convection region. The number of pairs is found to depend on the aspect ratio of circumferential length and distance between nozzle and impingement surface. The third is a three-dimensional natural convection region similar to Benard convection which constructs several cells. The radial Nusselt number distribution averaged along the circumferential direction is also presented corresponding to the flow.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0017-9310(00)00341-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2001-08, Vol.44 (16), p.3095-3102 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_26826805 |
source | Elsevier ScienceDirect Journals |
subjects | Convection and heat transfer Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Jets Physics Turbulent flows, convection, and heat transfer |
title | Movement of impingement heat transfer by a single circular jet with a confined wall |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Movement%20of%20impingement%20heat%20transfer%20by%20a%20single%20circular%20jet%20with%20a%20confined%20wall&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Ichimiya,%20Koichi&rft.date=2001-08-01&rft.volume=44&rft.issue=16&rft.spage=3095&rft.epage=3102&rft.pages=3095-3102&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/S0017-9310(00)00341-0&rft_dat=%3Cproquest_cross%3E26826805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26826805&rft_id=info:pmid/&rft_els_id=S0017931000003410&rfr_iscdi=true |