Movement of impingement heat transfer by a single circular jet with a confined wall

Impingement heat transfer and flow in the radial and circumferential directions by a single circular laminar jet in a flow passage with a confined insulated wall were estimated numerically in a three-dimensional system and were recognized by visualization of a thermosensitive liquid crystal. Local h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2001-08, Vol.44 (16), p.3095-3102
Hauptverfasser: Ichimiya, Koichi, Takema, Shoichi, Morimoto, Shunichi, Kunugi, Tomoaki, Akino, Norio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3102
container_issue 16
container_start_page 3095
container_title International journal of heat and mass transfer
container_volume 44
creator Ichimiya, Koichi
Takema, Shoichi
Morimoto, Shunichi
Kunugi, Tomoaki
Akino, Norio
description Impingement heat transfer and flow in the radial and circumferential directions by a single circular laminar jet in a flow passage with a confined insulated wall were estimated numerically in a three-dimensional system and were recognized by visualization of a thermosensitive liquid crystal. Local heat transfer is divided into three regions. The first is a two-dimensional forced convection region whose structure is a co-axial circle. The second laminar mixed-convection region begins with the onset of a buoyancy driven flow, which corresponds to thermal plumes rising from the heated impingement surface at discrete circumferential locations. The ascending and descending pair flows form longitudinal streak lines in the mixed convection region. The number of pairs is found to depend on the aspect ratio of circumferential length and distance between nozzle and impingement surface. The third is a three-dimensional natural convection region similar to Benard convection which constructs several cells. The radial Nusselt number distribution averaged along the circumferential direction is also presented corresponding to the flow.
doi_str_mv 10.1016/S0017-9310(00)00341-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26826805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931000003410</els_id><sourcerecordid>26826805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-e9930dafab12e4751fa7c9c43cd3195bced98eddd329eee6f24272f422882a203</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchBRA-rSfYzJ5HiF1Q8VM8hTSY2Jbtbk21L_71Zt4g3YSAM8yTv5EHonJIbSmhxOyOElglPKbki5JqQNKMJOUAjWpU8YbTih2j0ixyjkxCWfUuyYoRmr-0Gamg63Bps65VtPod2AbLDnZdNMODxfIclDnHoACvr1dpJj5fQ4a3tFnGk2sbYBjTeSudO0ZGRLsDZ_hyjj8eH98lzMn17epncTxOVUdolwHlKtDRyThlkZU6NLBVXWap0Snk-V6B5BVrrlHEAKAzLWMlMxlhVMclIOkaXw7sr336tIXSitkGBc7KBdh0EK6pYJI9gPoDKtyF4MGLlbS39TlAieoXiR6Ho_QjSV1Qo-oCLfYAMSjoTbSgb_lxmRVmVEbsbMIif3VjwIigLTdzfelCd0K39J-gbsRmFcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26826805</pqid></control><display><type>article</type><title>Movement of impingement heat transfer by a single circular jet with a confined wall</title><source>Elsevier ScienceDirect Journals</source><creator>Ichimiya, Koichi ; Takema, Shoichi ; Morimoto, Shunichi ; Kunugi, Tomoaki ; Akino, Norio</creator><creatorcontrib>Ichimiya, Koichi ; Takema, Shoichi ; Morimoto, Shunichi ; Kunugi, Tomoaki ; Akino, Norio</creatorcontrib><description>Impingement heat transfer and flow in the radial and circumferential directions by a single circular laminar jet in a flow passage with a confined insulated wall were estimated numerically in a three-dimensional system and were recognized by visualization of a thermosensitive liquid crystal. Local heat transfer is divided into three regions. The first is a two-dimensional forced convection region whose structure is a co-axial circle. The second laminar mixed-convection region begins with the onset of a buoyancy driven flow, which corresponds to thermal plumes rising from the heated impingement surface at discrete circumferential locations. The ascending and descending pair flows form longitudinal streak lines in the mixed convection region. The number of pairs is found to depend on the aspect ratio of circumferential length and distance between nozzle and impingement surface. The third is a three-dimensional natural convection region similar to Benard convection which constructs several cells. The radial Nusselt number distribution averaged along the circumferential direction is also presented corresponding to the flow.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/S0017-9310(00)00341-0</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Convection and heat transfer ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Jets ; Physics ; Turbulent flows, convection, and heat transfer</subject><ispartof>International journal of heat and mass transfer, 2001-08, Vol.44 (16), p.3095-3102</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-e9930dafab12e4751fa7c9c43cd3195bced98eddd329eee6f24272f422882a203</citedby><cites>FETCH-LOGICAL-c411t-e9930dafab12e4751fa7c9c43cd3195bced98eddd329eee6f24272f422882a203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931000003410$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1026787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ichimiya, Koichi</creatorcontrib><creatorcontrib>Takema, Shoichi</creatorcontrib><creatorcontrib>Morimoto, Shunichi</creatorcontrib><creatorcontrib>Kunugi, Tomoaki</creatorcontrib><creatorcontrib>Akino, Norio</creatorcontrib><title>Movement of impingement heat transfer by a single circular jet with a confined wall</title><title>International journal of heat and mass transfer</title><description>Impingement heat transfer and flow in the radial and circumferential directions by a single circular laminar jet in a flow passage with a confined insulated wall were estimated numerically in a three-dimensional system and were recognized by visualization of a thermosensitive liquid crystal. Local heat transfer is divided into three regions. The first is a two-dimensional forced convection region whose structure is a co-axial circle. The second laminar mixed-convection region begins with the onset of a buoyancy driven flow, which corresponds to thermal plumes rising from the heated impingement surface at discrete circumferential locations. The ascending and descending pair flows form longitudinal streak lines in the mixed convection region. The number of pairs is found to depend on the aspect ratio of circumferential length and distance between nozzle and impingement surface. The third is a three-dimensional natural convection region similar to Benard convection which constructs several cells. The radial Nusselt number distribution averaged along the circumferential direction is also presented corresponding to the flow.</description><subject>Convection and heat transfer</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Jets</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchBRA-rSfYzJ5HiF1Q8VM8hTSY2Jbtbk21L_71Zt4g3YSAM8yTv5EHonJIbSmhxOyOElglPKbki5JqQNKMJOUAjWpU8YbTih2j0ixyjkxCWfUuyYoRmr-0Gamg63Bps65VtPod2AbLDnZdNMODxfIclDnHoACvr1dpJj5fQ4a3tFnGk2sbYBjTeSudO0ZGRLsDZ_hyjj8eH98lzMn17epncTxOVUdolwHlKtDRyThlkZU6NLBVXWap0Snk-V6B5BVrrlHEAKAzLWMlMxlhVMclIOkaXw7sr336tIXSitkGBc7KBdh0EK6pYJI9gPoDKtyF4MGLlbS39TlAieoXiR6Ho_QjSV1Qo-oCLfYAMSjoTbSgb_lxmRVmVEbsbMIif3VjwIigLTdzfelCd0K39J-gbsRmFcw</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Ichimiya, Koichi</creator><creator>Takema, Shoichi</creator><creator>Morimoto, Shunichi</creator><creator>Kunugi, Tomoaki</creator><creator>Akino, Norio</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20010801</creationdate><title>Movement of impingement heat transfer by a single circular jet with a confined wall</title><author>Ichimiya, Koichi ; Takema, Shoichi ; Morimoto, Shunichi ; Kunugi, Tomoaki ; Akino, Norio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-e9930dafab12e4751fa7c9c43cd3195bced98eddd329eee6f24272f422882a203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Convection and heat transfer</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Jets</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ichimiya, Koichi</creatorcontrib><creatorcontrib>Takema, Shoichi</creatorcontrib><creatorcontrib>Morimoto, Shunichi</creatorcontrib><creatorcontrib>Kunugi, Tomoaki</creatorcontrib><creatorcontrib>Akino, Norio</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ichimiya, Koichi</au><au>Takema, Shoichi</au><au>Morimoto, Shunichi</au><au>Kunugi, Tomoaki</au><au>Akino, Norio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Movement of impingement heat transfer by a single circular jet with a confined wall</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>44</volume><issue>16</issue><spage>3095</spage><epage>3102</epage><pages>3095-3102</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>Impingement heat transfer and flow in the radial and circumferential directions by a single circular laminar jet in a flow passage with a confined insulated wall were estimated numerically in a three-dimensional system and were recognized by visualization of a thermosensitive liquid crystal. Local heat transfer is divided into three regions. The first is a two-dimensional forced convection region whose structure is a co-axial circle. The second laminar mixed-convection region begins with the onset of a buoyancy driven flow, which corresponds to thermal plumes rising from the heated impingement surface at discrete circumferential locations. The ascending and descending pair flows form longitudinal streak lines in the mixed convection region. The number of pairs is found to depend on the aspect ratio of circumferential length and distance between nozzle and impingement surface. The third is a three-dimensional natural convection region similar to Benard convection which constructs several cells. The radial Nusselt number distribution averaged along the circumferential direction is also presented corresponding to the flow.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0017-9310(00)00341-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2001-08, Vol.44 (16), p.3095-3102
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_26826805
source Elsevier ScienceDirect Journals
subjects Convection and heat transfer
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Jets
Physics
Turbulent flows, convection, and heat transfer
title Movement of impingement heat transfer by a single circular jet with a confined wall
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Movement%20of%20impingement%20heat%20transfer%20by%20a%20single%20circular%20jet%20with%20a%20confined%20wall&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Ichimiya,%20Koichi&rft.date=2001-08-01&rft.volume=44&rft.issue=16&rft.spage=3095&rft.epage=3102&rft.pages=3095-3102&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/S0017-9310(00)00341-0&rft_dat=%3Cproquest_cross%3E26826805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26826805&rft_id=info:pmid/&rft_els_id=S0017931000003410&rfr_iscdi=true