Numerical solution of the time-domain maxwell equations using high-accuracy finite-difference methods
High-accuracy finite-difference schemes are used to solve the two-dimensional time-domain Maxwell equations for electromagnetic wave propagation and scattering. The high-accuracy schemes consist of a seven-point spatial operator coupled with a six-stage Runge--Kutta time-marching method. Two methods...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2001, Vol.22 (5), p.1675-1696 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1696 |
---|---|
container_issue | 5 |
container_start_page | 1675 |
container_title | SIAM journal on scientific computing |
container_volume | 22 |
creator | JURGENS, H. M ZINGG, D. W |
description | High-accuracy finite-difference schemes are used to solve the two-dimensional time-domain Maxwell equations for electromagnetic wave propagation and scattering. The high-accuracy schemes consist of a seven-point spatial operator coupled with a six-stage Runge--Kutta time-marching method. Two methods are studied, one of which produces the maximum order of accuracy and one of which is optimized for propagation distances smaller than roughly 300 wavelengths. Boundary conditions are presented which preserve the accuracy of these schemes when modeling interfaces between different materials. Numerical experiments are performed which demonstrate the utility of the high-accuracy schemes in modeling waves incident on dielectric and perfect-conducting scatterers using Cartesian and curvilinear grids. The high-accuracy schemes are shown to be substantially more efficient, in both computing time and memory, than a second-order and a fourth-order method. The optimized scheme can lead to a reduction in error relative to the maximum-order scheme, with no additional expense, especially when the number of wavelengths of travel is large. |
doi_str_mv | 10.1137/S1064827598334666 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26823334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26823334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2896-b19256d01b6dc6c02dc84dda2ecbf2f1414e017c43734ea1e7b65d7575a5fe5a3</originalsourceid><addsrcrecordid>eNplkE1LxDAQhoMoqKs_wFsQ9FbNJGnSHkX8AtGDei7ZdOJG2kaTFt1_b8oKgp5mYJ73ZXgIOQJ2BiD0-RMwJSuuy7oSQiqltsgesLosNNR6e96VLOb7LtlP6Y0xULLmewQfph6jt6ajKXTT6MNAg6PjCunoeyza0Bs_0N58fWLXUfyYzMwkOiU_vNKVf10VxtopGrumzg9-zBnvHEYcLNIex1Vo0wHZcaZLePgzF-Tl-ur58ra4f7y5u7y4LyyvalUsoealahksVWuVZby1lWxbw9EuHXcgQSIDbaXQQqIB1EtVtrrUpSkdlkYsyOmm9z2GjwnT2PQ-2fy4GTBMqeGq4iL7yeDxH_AtTHHIvzU1ByEUy-CCwAayMaQU0TXv0fcmrhtgzWy9-Wc9Z05-ik3KUl00g_XpNyghR5gW3zUUgtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921336082</pqid></control><display><type>article</type><title>Numerical solution of the time-domain maxwell equations using high-accuracy finite-difference methods</title><source>SIAM Journals Online</source><creator>JURGENS, H. M ; ZINGG, D. W</creator><creatorcontrib>JURGENS, H. M ; ZINGG, D. W</creatorcontrib><description>High-accuracy finite-difference schemes are used to solve the two-dimensional time-domain Maxwell equations for electromagnetic wave propagation and scattering. The high-accuracy schemes consist of a seven-point spatial operator coupled with a six-stage Runge--Kutta time-marching method. Two methods are studied, one of which produces the maximum order of accuracy and one of which is optimized for propagation distances smaller than roughly 300 wavelengths. Boundary conditions are presented which preserve the accuracy of these schemes when modeling interfaces between different materials. Numerical experiments are performed which demonstrate the utility of the high-accuracy schemes in modeling waves incident on dielectric and perfect-conducting scatterers using Cartesian and curvilinear grids. The high-accuracy schemes are shown to be substantially more efficient, in both computing time and memory, than a second-order and a fourth-order method. The optimized scheme can lead to a reduction in error relative to the maximum-order scheme, with no additional expense, especially when the number of wavelengths of travel is large.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/S1064827598334666</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Boundary conditions ; Coordinate transformations ; Exact sciences and technology ; Mathematics ; Methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Propagation ; Sciences and techniques of general use ; Simulation</subject><ispartof>SIAM journal on scientific computing, 2001, Vol.22 (5), p.1675-1696</ispartof><rights>2002 INIST-CNRS</rights><rights>[Copyright] © 2000 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2896-b19256d01b6dc6c02dc84dda2ecbf2f1414e017c43734ea1e7b65d7575a5fe5a3</citedby><cites>FETCH-LOGICAL-c2896-b19256d01b6dc6c02dc84dda2ecbf2f1414e017c43734ea1e7b65d7575a5fe5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14110607$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JURGENS, H. M</creatorcontrib><creatorcontrib>ZINGG, D. W</creatorcontrib><title>Numerical solution of the time-domain maxwell equations using high-accuracy finite-difference methods</title><title>SIAM journal on scientific computing</title><description>High-accuracy finite-difference schemes are used to solve the two-dimensional time-domain Maxwell equations for electromagnetic wave propagation and scattering. The high-accuracy schemes consist of a seven-point spatial operator coupled with a six-stage Runge--Kutta time-marching method. Two methods are studied, one of which produces the maximum order of accuracy and one of which is optimized for propagation distances smaller than roughly 300 wavelengths. Boundary conditions are presented which preserve the accuracy of these schemes when modeling interfaces between different materials. Numerical experiments are performed which demonstrate the utility of the high-accuracy schemes in modeling waves incident on dielectric and perfect-conducting scatterers using Cartesian and curvilinear grids. The high-accuracy schemes are shown to be substantially more efficient, in both computing time and memory, than a second-order and a fourth-order method. The optimized scheme can lead to a reduction in error relative to the maximum-order scheme, with no additional expense, especially when the number of wavelengths of travel is large.</description><subject>Accuracy</subject><subject>Boundary conditions</subject><subject>Coordinate transformations</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Propagation</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE1LxDAQhoMoqKs_wFsQ9FbNJGnSHkX8AtGDei7ZdOJG2kaTFt1_b8oKgp5mYJ73ZXgIOQJ2BiD0-RMwJSuuy7oSQiqltsgesLosNNR6e96VLOb7LtlP6Y0xULLmewQfph6jt6ajKXTT6MNAg6PjCunoeyza0Bs_0N58fWLXUfyYzMwkOiU_vNKVf10VxtopGrumzg9-zBnvHEYcLNIex1Vo0wHZcaZLePgzF-Tl-ur58ra4f7y5u7y4LyyvalUsoealahksVWuVZby1lWxbw9EuHXcgQSIDbaXQQqIB1EtVtrrUpSkdlkYsyOmm9z2GjwnT2PQ-2fy4GTBMqeGq4iL7yeDxH_AtTHHIvzU1ByEUy-CCwAayMaQU0TXv0fcmrhtgzWy9-Wc9Z05-ik3KUl00g_XpNyghR5gW3zUUgtg</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>JURGENS, H. M</creator><creator>ZINGG, D. W</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2001</creationdate><title>Numerical solution of the time-domain maxwell equations using high-accuracy finite-difference methods</title><author>JURGENS, H. M ; ZINGG, D. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2896-b19256d01b6dc6c02dc84dda2ecbf2f1414e017c43734ea1e7b65d7575a5fe5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Accuracy</topic><topic>Boundary conditions</topic><topic>Coordinate transformations</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Propagation</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JURGENS, H. M</creatorcontrib><creatorcontrib>ZINGG, D. W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JURGENS, H. M</au><au>ZINGG, D. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of the time-domain maxwell equations using high-accuracy finite-difference methods</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2001</date><risdate>2001</risdate><volume>22</volume><issue>5</issue><spage>1675</spage><epage>1696</epage><pages>1675-1696</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>High-accuracy finite-difference schemes are used to solve the two-dimensional time-domain Maxwell equations for electromagnetic wave propagation and scattering. The high-accuracy schemes consist of a seven-point spatial operator coupled with a six-stage Runge--Kutta time-marching method. Two methods are studied, one of which produces the maximum order of accuracy and one of which is optimized for propagation distances smaller than roughly 300 wavelengths. Boundary conditions are presented which preserve the accuracy of these schemes when modeling interfaces between different materials. Numerical experiments are performed which demonstrate the utility of the high-accuracy schemes in modeling waves incident on dielectric and perfect-conducting scatterers using Cartesian and curvilinear grids. The high-accuracy schemes are shown to be substantially more efficient, in both computing time and memory, than a second-order and a fourth-order method. The optimized scheme can lead to a reduction in error relative to the maximum-order scheme, with no additional expense, especially when the number of wavelengths of travel is large.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1064827598334666</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2001, Vol.22 (5), p.1675-1696 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_miscellaneous_26823334 |
source | SIAM Journals Online |
subjects | Accuracy Boundary conditions Coordinate transformations Exact sciences and technology Mathematics Methods Numerical analysis Numerical analysis. Scientific computation Partial differential equations, initial value problems and time-dependant initial-boundary value problems Propagation Sciences and techniques of general use Simulation |
title | Numerical solution of the time-domain maxwell equations using high-accuracy finite-difference methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20the%20time-domain%20maxwell%20equations%20using%20high-accuracy%20finite-difference%20methods&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=JURGENS,%20H.%20M&rft.date=2001&rft.volume=22&rft.issue=5&rft.spage=1675&rft.epage=1696&rft.pages=1675-1696&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/S1064827598334666&rft_dat=%3Cproquest_cross%3E26823334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921336082&rft_id=info:pmid/&rfr_iscdi=true |