Transforming growth factor‐beta 1: A new factor reducing hepatic SHBG production in liver fibrosis
Low plasma sex hormone‐binding globulin (SHBG) levels are present in fatty liver disease, which represents a spectrum of diseases ranging from hepatocellular steatosis through steatohepatitis to fibrosis and irreversible cirrhosis. We have previously determined that fat accumulation reduces SHBG pro...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2022-09, Vol.237 (9), p.3598-3613 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3613 |
---|---|
container_issue | 9 |
container_start_page | 3598 |
container_title | Journal of cellular physiology |
container_volume | 237 |
creator | Briansó‐Llort, Laura Fuertes‐Rioja, Lidia Ramos‐Perez, Lorena Salcedo‐Allende, Maria Teresa Hernandez, Cristina Simó, Rafael Selva, David M. |
description | Low plasma sex hormone‐binding globulin (SHBG) levels are present in fatty liver disease, which represents a spectrum of diseases ranging from hepatocellular steatosis through steatohepatitis to fibrosis and irreversible cirrhosis. We have previously determined that fat accumulation reduces SHBG production in different nonalcoholic fatty liver disease mouse models. In the present work, we are interested in elucidating the molecular mechanisms reducing SHBG plasma levels in liver fibrosis. For this purpose, in vivo studies were performed using the human SHBG transgenic mice developing liver fibrosis induced by carbon tetrachloride (CCl4). Our results clearly showed that CCl4 induced liver fibrosis and reduced SHBG production by reducing hepatocyte nuclear factor 4 alpha (HNF‐4α). The SHBG reduction could be influenced by the increase in transforming growth factor‐beta 1 (TGF‐β1), which was increased in mice developing liver fibrosis. Therefore, we decided to evaluate the role of TGF‐β1 in regulating hepatic SHBG production. Results obtained in both HepG2 cells and human SHBG transgenic mice showed that TGF‐β1 reduced significantly SHBG messenger RNA and protein levels. Mechanistically TGF‐β1 downregulated P1‐HNF‐4α isoforms and increased P2‐HNF‐4α isoforms via Smad3 and Stat3 pathways through TGF‐β1 receptor I, resulting in transcriptional repression of the SHBG gene. Taken together, we found for the first time that TGF‐β1 is a new factor regulating hepatic SHBG production in liver fibrosis. Further research is needed to determine the role of this reduction in hepatic SHBG production in the progression of nonalcoholic steatohepatitis.
During CCl4‐induced acute liver injury in mice, there is an increase in TGF‐β1 production. TGF‐β1 activates hepatic stellate cells which are responsible for collagen production. In hepatocytes, TGF‐β1 reduces P1‐HNF‐4α isoforms and increases P2‐HNF‐4α isoforms via Smad and Stat signaling pathways through TGF‐β1 receptor I, which, in turn, reduces SHBG expression in hepatocytes. KC, Kupffer cells; HSC, hepatic stellate cells; ECM, extracellular matrix. |
doi_str_mv | 10.1002/jcp.30818 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681818090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712868504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3308-144c93613e7f686f14aeb4fbc91cf395999925b825d9e0d26b734169c6351f083</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaW2MAirX8SJ2ZXKmhBlUCirK3EsVtXaRzshKo7jsAZOQku7QqJ2Yz05pvRmwfAJUYDjBAZrmQzoCjD2RHoYcTTKGYJOQa9MMMRT2J8Cs68XyGEOKe0B8q5y2uvrVubegEXzm7aJdS5bK37_vwqVJtDfAtHsFabgwydKju5o5eqyVsj4ev0bgIbZ4PcGltDU8PKfCgHtSmc9cafgxOdV15dHHofvD3cz8fTaPY8eRyPZpGkwXOE41hyyjBVqWYZ0zjOVRHrQnIsNeUJD0WSIiNJyRUqCStSGmPGJaMJ1iijfXC9vxvMvHfKt2JtvFRVldfKdl4QFoLBGeIooFd_0JXtXB3cCZJikrEsQXGgbvaUDH94p7RonFnnbiswEru8Rchb_OYd2OGe3ZhKbf8HxdP4Zb_xA3g2gPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712868504</pqid></control><display><type>article</type><title>Transforming growth factor‐beta 1: A new factor reducing hepatic SHBG production in liver fibrosis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Briansó‐Llort, Laura ; Fuertes‐Rioja, Lidia ; Ramos‐Perez, Lorena ; Salcedo‐Allende, Maria Teresa ; Hernandez, Cristina ; Simó, Rafael ; Selva, David M.</creator><creatorcontrib>Briansó‐Llort, Laura ; Fuertes‐Rioja, Lidia ; Ramos‐Perez, Lorena ; Salcedo‐Allende, Maria Teresa ; Hernandez, Cristina ; Simó, Rafael ; Selva, David M.</creatorcontrib><description>Low plasma sex hormone‐binding globulin (SHBG) levels are present in fatty liver disease, which represents a spectrum of diseases ranging from hepatocellular steatosis through steatohepatitis to fibrosis and irreversible cirrhosis. We have previously determined that fat accumulation reduces SHBG production in different nonalcoholic fatty liver disease mouse models. In the present work, we are interested in elucidating the molecular mechanisms reducing SHBG plasma levels in liver fibrosis. For this purpose, in vivo studies were performed using the human SHBG transgenic mice developing liver fibrosis induced by carbon tetrachloride (CCl4). Our results clearly showed that CCl4 induced liver fibrosis and reduced SHBG production by reducing hepatocyte nuclear factor 4 alpha (HNF‐4α). The SHBG reduction could be influenced by the increase in transforming growth factor‐beta 1 (TGF‐β1), which was increased in mice developing liver fibrosis. Therefore, we decided to evaluate the role of TGF‐β1 in regulating hepatic SHBG production. Results obtained in both HepG2 cells and human SHBG transgenic mice showed that TGF‐β1 reduced significantly SHBG messenger RNA and protein levels. Mechanistically TGF‐β1 downregulated P1‐HNF‐4α isoforms and increased P2‐HNF‐4α isoforms via Smad3 and Stat3 pathways through TGF‐β1 receptor I, resulting in transcriptional repression of the SHBG gene. Taken together, we found for the first time that TGF‐β1 is a new factor regulating hepatic SHBG production in liver fibrosis. Further research is needed to determine the role of this reduction in hepatic SHBG production in the progression of nonalcoholic steatohepatitis.
During CCl4‐induced acute liver injury in mice, there is an increase in TGF‐β1 production. TGF‐β1 activates hepatic stellate cells which are responsible for collagen production. In hepatocytes, TGF‐β1 reduces P1‐HNF‐4α isoforms and increases P2‐HNF‐4α isoforms via Smad and Stat signaling pathways through TGF‐β1 receptor I, which, in turn, reduces SHBG expression in hepatocytes. KC, Kupffer cells; HSC, hepatic stellate cells; ECM, extracellular matrix.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.30818</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Animal models ; Carbon tetrachloride ; Cirrhosis ; Fatty liver ; Fibrosis ; Gene silencing ; Globulins ; Growth factors ; hepatic fibrosis ; Hepatocyte nuclear factor 4 ; HNF‐4α isoforms ; Human performance ; In vivo methods and tests ; Isoforms ; Liver ; Liver cirrhosis ; Liver diseases ; Molecular modelling ; mRNA ; Plasma levels ; Reduction ; Sex hormones ; Smad3 protein ; Stat3 protein ; Steatosis ; TGF‐β1 ; Transforming growth factor-b1 ; Transgenic animals ; Transgenic mice ; transgenic mice and HepG2 cells</subject><ispartof>Journal of cellular physiology, 2022-09, Vol.237 (9), p.3598-3613</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3308-144c93613e7f686f14aeb4fbc91cf395999925b825d9e0d26b734169c6351f083</citedby><cites>FETCH-LOGICAL-c3308-144c93613e7f686f14aeb4fbc91cf395999925b825d9e0d26b734169c6351f083</cites><orcidid>0000-0002-0333-5629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.30818$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.30818$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Briansó‐Llort, Laura</creatorcontrib><creatorcontrib>Fuertes‐Rioja, Lidia</creatorcontrib><creatorcontrib>Ramos‐Perez, Lorena</creatorcontrib><creatorcontrib>Salcedo‐Allende, Maria Teresa</creatorcontrib><creatorcontrib>Hernandez, Cristina</creatorcontrib><creatorcontrib>Simó, Rafael</creatorcontrib><creatorcontrib>Selva, David M.</creatorcontrib><title>Transforming growth factor‐beta 1: A new factor reducing hepatic SHBG production in liver fibrosis</title><title>Journal of cellular physiology</title><description>Low plasma sex hormone‐binding globulin (SHBG) levels are present in fatty liver disease, which represents a spectrum of diseases ranging from hepatocellular steatosis through steatohepatitis to fibrosis and irreversible cirrhosis. We have previously determined that fat accumulation reduces SHBG production in different nonalcoholic fatty liver disease mouse models. In the present work, we are interested in elucidating the molecular mechanisms reducing SHBG plasma levels in liver fibrosis. For this purpose, in vivo studies were performed using the human SHBG transgenic mice developing liver fibrosis induced by carbon tetrachloride (CCl4). Our results clearly showed that CCl4 induced liver fibrosis and reduced SHBG production by reducing hepatocyte nuclear factor 4 alpha (HNF‐4α). The SHBG reduction could be influenced by the increase in transforming growth factor‐beta 1 (TGF‐β1), which was increased in mice developing liver fibrosis. Therefore, we decided to evaluate the role of TGF‐β1 in regulating hepatic SHBG production. Results obtained in both HepG2 cells and human SHBG transgenic mice showed that TGF‐β1 reduced significantly SHBG messenger RNA and protein levels. Mechanistically TGF‐β1 downregulated P1‐HNF‐4α isoforms and increased P2‐HNF‐4α isoforms via Smad3 and Stat3 pathways through TGF‐β1 receptor I, resulting in transcriptional repression of the SHBG gene. Taken together, we found for the first time that TGF‐β1 is a new factor regulating hepatic SHBG production in liver fibrosis. Further research is needed to determine the role of this reduction in hepatic SHBG production in the progression of nonalcoholic steatohepatitis.
During CCl4‐induced acute liver injury in mice, there is an increase in TGF‐β1 production. TGF‐β1 activates hepatic stellate cells which are responsible for collagen production. In hepatocytes, TGF‐β1 reduces P1‐HNF‐4α isoforms and increases P2‐HNF‐4α isoforms via Smad and Stat signaling pathways through TGF‐β1 receptor I, which, in turn, reduces SHBG expression in hepatocytes. KC, Kupffer cells; HSC, hepatic stellate cells; ECM, extracellular matrix.</description><subject>Animal models</subject><subject>Carbon tetrachloride</subject><subject>Cirrhosis</subject><subject>Fatty liver</subject><subject>Fibrosis</subject><subject>Gene silencing</subject><subject>Globulins</subject><subject>Growth factors</subject><subject>hepatic fibrosis</subject><subject>Hepatocyte nuclear factor 4</subject><subject>HNF‐4α isoforms</subject><subject>Human performance</subject><subject>In vivo methods and tests</subject><subject>Isoforms</subject><subject>Liver</subject><subject>Liver cirrhosis</subject><subject>Liver diseases</subject><subject>Molecular modelling</subject><subject>mRNA</subject><subject>Plasma levels</subject><subject>Reduction</subject><subject>Sex hormones</subject><subject>Smad3 protein</subject><subject>Stat3 protein</subject><subject>Steatosis</subject><subject>TGF‐β1</subject><subject>Transforming growth factor-b1</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><subject>transgenic mice and HepG2 cells</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaW2MAirX8SJ2ZXKmhBlUCirK3EsVtXaRzshKo7jsAZOQku7QqJ2Yz05pvRmwfAJUYDjBAZrmQzoCjD2RHoYcTTKGYJOQa9MMMRT2J8Cs68XyGEOKe0B8q5y2uvrVubegEXzm7aJdS5bK37_vwqVJtDfAtHsFabgwydKju5o5eqyVsj4ev0bgIbZ4PcGltDU8PKfCgHtSmc9cafgxOdV15dHHofvD3cz8fTaPY8eRyPZpGkwXOE41hyyjBVqWYZ0zjOVRHrQnIsNeUJD0WSIiNJyRUqCStSGmPGJaMJ1iijfXC9vxvMvHfKt2JtvFRVldfKdl4QFoLBGeIooFd_0JXtXB3cCZJikrEsQXGgbvaUDH94p7RonFnnbiswEru8Rchb_OYd2OGe3ZhKbf8HxdP4Zb_xA3g2gPk</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Briansó‐Llort, Laura</creator><creator>Fuertes‐Rioja, Lidia</creator><creator>Ramos‐Perez, Lorena</creator><creator>Salcedo‐Allende, Maria Teresa</creator><creator>Hernandez, Cristina</creator><creator>Simó, Rafael</creator><creator>Selva, David M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0333-5629</orcidid></search><sort><creationdate>202209</creationdate><title>Transforming growth factor‐beta 1: A new factor reducing hepatic SHBG production in liver fibrosis</title><author>Briansó‐Llort, Laura ; Fuertes‐Rioja, Lidia ; Ramos‐Perez, Lorena ; Salcedo‐Allende, Maria Teresa ; Hernandez, Cristina ; Simó, Rafael ; Selva, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3308-144c93613e7f686f14aeb4fbc91cf395999925b825d9e0d26b734169c6351f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal models</topic><topic>Carbon tetrachloride</topic><topic>Cirrhosis</topic><topic>Fatty liver</topic><topic>Fibrosis</topic><topic>Gene silencing</topic><topic>Globulins</topic><topic>Growth factors</topic><topic>hepatic fibrosis</topic><topic>Hepatocyte nuclear factor 4</topic><topic>HNF‐4α isoforms</topic><topic>Human performance</topic><topic>In vivo methods and tests</topic><topic>Isoforms</topic><topic>Liver</topic><topic>Liver cirrhosis</topic><topic>Liver diseases</topic><topic>Molecular modelling</topic><topic>mRNA</topic><topic>Plasma levels</topic><topic>Reduction</topic><topic>Sex hormones</topic><topic>Smad3 protein</topic><topic>Stat3 protein</topic><topic>Steatosis</topic><topic>TGF‐β1</topic><topic>Transforming growth factor-b1</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><topic>transgenic mice and HepG2 cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Briansó‐Llort, Laura</creatorcontrib><creatorcontrib>Fuertes‐Rioja, Lidia</creatorcontrib><creatorcontrib>Ramos‐Perez, Lorena</creatorcontrib><creatorcontrib>Salcedo‐Allende, Maria Teresa</creatorcontrib><creatorcontrib>Hernandez, Cristina</creatorcontrib><creatorcontrib>Simó, Rafael</creatorcontrib><creatorcontrib>Selva, David M.</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Briansó‐Llort, Laura</au><au>Fuertes‐Rioja, Lidia</au><au>Ramos‐Perez, Lorena</au><au>Salcedo‐Allende, Maria Teresa</au><au>Hernandez, Cristina</au><au>Simó, Rafael</au><au>Selva, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transforming growth factor‐beta 1: A new factor reducing hepatic SHBG production in liver fibrosis</atitle><jtitle>Journal of cellular physiology</jtitle><date>2022-09</date><risdate>2022</risdate><volume>237</volume><issue>9</issue><spage>3598</spage><epage>3613</epage><pages>3598-3613</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Low plasma sex hormone‐binding globulin (SHBG) levels are present in fatty liver disease, which represents a spectrum of diseases ranging from hepatocellular steatosis through steatohepatitis to fibrosis and irreversible cirrhosis. We have previously determined that fat accumulation reduces SHBG production in different nonalcoholic fatty liver disease mouse models. In the present work, we are interested in elucidating the molecular mechanisms reducing SHBG plasma levels in liver fibrosis. For this purpose, in vivo studies were performed using the human SHBG transgenic mice developing liver fibrosis induced by carbon tetrachloride (CCl4). Our results clearly showed that CCl4 induced liver fibrosis and reduced SHBG production by reducing hepatocyte nuclear factor 4 alpha (HNF‐4α). The SHBG reduction could be influenced by the increase in transforming growth factor‐beta 1 (TGF‐β1), which was increased in mice developing liver fibrosis. Therefore, we decided to evaluate the role of TGF‐β1 in regulating hepatic SHBG production. Results obtained in both HepG2 cells and human SHBG transgenic mice showed that TGF‐β1 reduced significantly SHBG messenger RNA and protein levels. Mechanistically TGF‐β1 downregulated P1‐HNF‐4α isoforms and increased P2‐HNF‐4α isoforms via Smad3 and Stat3 pathways through TGF‐β1 receptor I, resulting in transcriptional repression of the SHBG gene. Taken together, we found for the first time that TGF‐β1 is a new factor regulating hepatic SHBG production in liver fibrosis. Further research is needed to determine the role of this reduction in hepatic SHBG production in the progression of nonalcoholic steatohepatitis.
During CCl4‐induced acute liver injury in mice, there is an increase in TGF‐β1 production. TGF‐β1 activates hepatic stellate cells which are responsible for collagen production. In hepatocytes, TGF‐β1 reduces P1‐HNF‐4α isoforms and increases P2‐HNF‐4α isoforms via Smad and Stat signaling pathways through TGF‐β1 receptor I, which, in turn, reduces SHBG expression in hepatocytes. KC, Kupffer cells; HSC, hepatic stellate cells; ECM, extracellular matrix.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jcp.30818</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0333-5629</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2022-09, Vol.237 (9), p.3598-3613 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_miscellaneous_2681818090 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Animal models Carbon tetrachloride Cirrhosis Fatty liver Fibrosis Gene silencing Globulins Growth factors hepatic fibrosis Hepatocyte nuclear factor 4 HNF‐4α isoforms Human performance In vivo methods and tests Isoforms Liver Liver cirrhosis Liver diseases Molecular modelling mRNA Plasma levels Reduction Sex hormones Smad3 protein Stat3 protein Steatosis TGF‐β1 Transforming growth factor-b1 Transgenic animals Transgenic mice transgenic mice and HepG2 cells |
title | Transforming growth factor‐beta 1: A new factor reducing hepatic SHBG production in liver fibrosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transforming%20growth%20factor%E2%80%90beta%201:%20A%20new%20factor%20reducing%20hepatic%20SHBG%20production%20in%20liver%20fibrosis&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Brians%C3%B3%E2%80%90Llort,%20Laura&rft.date=2022-09&rft.volume=237&rft.issue=9&rft.spage=3598&rft.epage=3613&rft.pages=3598-3613&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.30818&rft_dat=%3Cproquest_cross%3E2712868504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712868504&rft_id=info:pmid/&rfr_iscdi=true |