Active Tuning of Plasmon Damping via Light Induced Magnetism

Circularly polarized optical excitation of plasmonic nanostructures causes coherent circulating motion of their electrons, which in turn gives rise to strong optically induced magnetization, a phenomenon known as the inverse Faraday effect (IFE). In this study we report how the IFE also significantl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-07, Vol.22 (13), p.5120-5126
Hauptverfasser: Cheng, Oscar Hsu-Cheng, Zhao, Boqin, Brawley, Zachary, Son, Dong Hee, Sheldon, Matthew T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5126
container_issue 13
container_start_page 5120
container_title Nano letters
container_volume 22
creator Cheng, Oscar Hsu-Cheng
Zhao, Boqin
Brawley, Zachary
Son, Dong Hee
Sheldon, Matthew T.
description Circularly polarized optical excitation of plasmonic nanostructures causes coherent circulating motion of their electrons, which in turn gives rise to strong optically induced magnetization, a phenomenon known as the inverse Faraday effect (IFE). In this study we report how the IFE also significantly decreases plasmon damping. By modulating the optical polarization state incident on achiral plasmonic nanostructures from linear to circular, we observe reversible increases of reflectance by up to 8% and simultaneous increases of optical field concentration by 35.7% under 109 W/m2 continuous wave (CW) optical excitation. These signatures of decreased plasmon damping were also monitored in the presence of an external magnetic field (0.2 T). We rationalize the observed decreases in plasmon damping in terms of the Lorentz forces acting on the circulating electron trajectories. Our results outline strategies for actively modulating intrinsic losses in the metal via optomagnetic effects encoded in the polarization state of incident light.
doi_str_mv 10.1021/acs.nanolett.2c00571
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681813646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681813646</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-ab2f9a01b6db735a7e06fda887c82706788bc4256e196e8f038c7ce06a3dc7173</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwDzj0yKXDSdoklbhM42vSEBzGOXLTdHRqk9Gkk_j3dBpw5GTLfl5Lfgi5pjCjwOgtmjBz6HxrY5wxA5BLekImNOeQiqJgp3-9ys7JRQhbACh4DhNyNzex2dtkPbjGbRJfJ28ths675B673WG0bzBZNZuPmCxdNRhbJS-4cTY2obskZzW2wV791Cl5f3xYL57T1evTcjFfpchZHlMsWV0g0FJUpeQ5SguirlApaRSTIKRSpclYLiwthFU1cGWkGSHklZFU8im5Od7d9f5zsCHqrgnGti0664egmVBUUS4yMaLZETW9D6G3td71TYf9l6agD7L0KEv_ytI_ssYYHGOH7dYPvRv_-T_yDXPUcHU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681813646</pqid></control><display><type>article</type><title>Active Tuning of Plasmon Damping via Light Induced Magnetism</title><source>American Chemical Society Journals</source><creator>Cheng, Oscar Hsu-Cheng ; Zhao, Boqin ; Brawley, Zachary ; Son, Dong Hee ; Sheldon, Matthew T.</creator><creatorcontrib>Cheng, Oscar Hsu-Cheng ; Zhao, Boqin ; Brawley, Zachary ; Son, Dong Hee ; Sheldon, Matthew T.</creatorcontrib><description>Circularly polarized optical excitation of plasmonic nanostructures causes coherent circulating motion of their electrons, which in turn gives rise to strong optically induced magnetization, a phenomenon known as the inverse Faraday effect (IFE). In this study we report how the IFE also significantly decreases plasmon damping. By modulating the optical polarization state incident on achiral plasmonic nanostructures from linear to circular, we observe reversible increases of reflectance by up to 8% and simultaneous increases of optical field concentration by 35.7% under 109 W/m2 continuous wave (CW) optical excitation. These signatures of decreased plasmon damping were also monitored in the presence of an external magnetic field (0.2 T). We rationalize the observed decreases in plasmon damping in terms of the Lorentz forces acting on the circulating electron trajectories. Our results outline strategies for actively modulating intrinsic losses in the metal via optomagnetic effects encoded in the polarization state of incident light.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.2c00571</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2022-07, Vol.22 (13), p.5120-5126</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-ab2f9a01b6db735a7e06fda887c82706788bc4256e196e8f038c7ce06a3dc7173</citedby><cites>FETCH-LOGICAL-a325t-ab2f9a01b6db735a7e06fda887c82706788bc4256e196e8f038c7ce06a3dc7173</cites><orcidid>0000-0001-9352-9883 ; 0000-0001-9002-5188 ; 0000-0002-4940-7966 ; 0000-0002-0289-7865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.2c00571$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.2c00571$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids></links><search><creatorcontrib>Cheng, Oscar Hsu-Cheng</creatorcontrib><creatorcontrib>Zhao, Boqin</creatorcontrib><creatorcontrib>Brawley, Zachary</creatorcontrib><creatorcontrib>Son, Dong Hee</creatorcontrib><creatorcontrib>Sheldon, Matthew T.</creatorcontrib><title>Active Tuning of Plasmon Damping via Light Induced Magnetism</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Circularly polarized optical excitation of plasmonic nanostructures causes coherent circulating motion of their electrons, which in turn gives rise to strong optically induced magnetization, a phenomenon known as the inverse Faraday effect (IFE). In this study we report how the IFE also significantly decreases plasmon damping. By modulating the optical polarization state incident on achiral plasmonic nanostructures from linear to circular, we observe reversible increases of reflectance by up to 8% and simultaneous increases of optical field concentration by 35.7% under 109 W/m2 continuous wave (CW) optical excitation. These signatures of decreased plasmon damping were also monitored in the presence of an external magnetic field (0.2 T). We rationalize the observed decreases in plasmon damping in terms of the Lorentz forces acting on the circulating electron trajectories. Our results outline strategies for actively modulating intrinsic losses in the metal via optomagnetic effects encoded in the polarization state of incident light.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwDzj0yKXDSdoklbhM42vSEBzGOXLTdHRqk9Gkk_j3dBpw5GTLfl5Lfgi5pjCjwOgtmjBz6HxrY5wxA5BLekImNOeQiqJgp3-9ys7JRQhbACh4DhNyNzex2dtkPbjGbRJfJ28ths675B673WG0bzBZNZuPmCxdNRhbJS-4cTY2obskZzW2wV791Cl5f3xYL57T1evTcjFfpchZHlMsWV0g0FJUpeQ5SguirlApaRSTIKRSpclYLiwthFU1cGWkGSHklZFU8im5Od7d9f5zsCHqrgnGti0664egmVBUUS4yMaLZETW9D6G3td71TYf9l6agD7L0KEv_ytI_ssYYHGOH7dYPvRv_-T_yDXPUcHU</recordid><startdate>20220713</startdate><enddate>20220713</enddate><creator>Cheng, Oscar Hsu-Cheng</creator><creator>Zhao, Boqin</creator><creator>Brawley, Zachary</creator><creator>Son, Dong Hee</creator><creator>Sheldon, Matthew T.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9352-9883</orcidid><orcidid>https://orcid.org/0000-0001-9002-5188</orcidid><orcidid>https://orcid.org/0000-0002-4940-7966</orcidid><orcidid>https://orcid.org/0000-0002-0289-7865</orcidid></search><sort><creationdate>20220713</creationdate><title>Active Tuning of Plasmon Damping via Light Induced Magnetism</title><author>Cheng, Oscar Hsu-Cheng ; Zhao, Boqin ; Brawley, Zachary ; Son, Dong Hee ; Sheldon, Matthew T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-ab2f9a01b6db735a7e06fda887c82706788bc4256e196e8f038c7ce06a3dc7173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Oscar Hsu-Cheng</creatorcontrib><creatorcontrib>Zhao, Boqin</creatorcontrib><creatorcontrib>Brawley, Zachary</creatorcontrib><creatorcontrib>Son, Dong Hee</creatorcontrib><creatorcontrib>Sheldon, Matthew T.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Oscar Hsu-Cheng</au><au>Zhao, Boqin</au><au>Brawley, Zachary</au><au>Son, Dong Hee</au><au>Sheldon, Matthew T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Tuning of Plasmon Damping via Light Induced Magnetism</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2022-07-13</date><risdate>2022</risdate><volume>22</volume><issue>13</issue><spage>5120</spage><epage>5126</epage><pages>5120-5126</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Circularly polarized optical excitation of plasmonic nanostructures causes coherent circulating motion of their electrons, which in turn gives rise to strong optically induced magnetization, a phenomenon known as the inverse Faraday effect (IFE). In this study we report how the IFE also significantly decreases plasmon damping. By modulating the optical polarization state incident on achiral plasmonic nanostructures from linear to circular, we observe reversible increases of reflectance by up to 8% and simultaneous increases of optical field concentration by 35.7% under 109 W/m2 continuous wave (CW) optical excitation. These signatures of decreased plasmon damping were also monitored in the presence of an external magnetic field (0.2 T). We rationalize the observed decreases in plasmon damping in terms of the Lorentz forces acting on the circulating electron trajectories. Our results outline strategies for actively modulating intrinsic losses in the metal via optomagnetic effects encoded in the polarization state of incident light.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.2c00571</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9352-9883</orcidid><orcidid>https://orcid.org/0000-0001-9002-5188</orcidid><orcidid>https://orcid.org/0000-0002-4940-7966</orcidid><orcidid>https://orcid.org/0000-0002-0289-7865</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2022-07, Vol.22 (13), p.5120-5126
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2681813646
source American Chemical Society Journals
title Active Tuning of Plasmon Damping via Light Induced Magnetism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Tuning%20of%20Plasmon%20Damping%20via%20Light%20Induced%20Magnetism&rft.jtitle=Nano%20letters&rft.au=Cheng,%20Oscar%20Hsu-Cheng&rft.date=2022-07-13&rft.volume=22&rft.issue=13&rft.spage=5120&rft.epage=5126&rft.pages=5120-5126&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.2c00571&rft_dat=%3Cproquest_cross%3E2681813646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681813646&rft_id=info:pmid/&rfr_iscdi=true