An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes
An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the se...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-09, Vol.61 (36), p.e202205515-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | e202205515 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Chugh, Vishal Chatterjee, Basujit Chang, Wei‐Chieh Cramer, Hanna H. Hindemith, Carsten Randel, Helena Weyhermüller, Thomas Farès, Christophe Werlé, Christophe |
description | An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. The competition for interaction with boron between a solvent molecule and a substrate was found crucial for adaptivity. When operating in THF, the reduction network stops at the hydroxylamine platform, whereas the reaction can be directed to the aniline platform in toluene.
An adaptive rhodium‐based catalyst for controlled hydrogenation of nitroarenes to hydroxylamines and anilines is presented. Both product platforms could be accessed under mild conditions and excellent yields using molecular hydrogen as the reducing agent. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. |
doi_str_mv | 10.1002/anie.202205515 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681813481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681813481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-c0d230892a04a3552fe57bfc2c3e2c7256c674d64c2ce9a455d1f95fdc5819d83</originalsourceid><addsrcrecordid>eNqFkN9LHDEQx0OpVL32tY8S6Isve-bHzib7eBxWBTlL0ecQk9m6dm9zJtnK_fdGTi344sMww_CZD8OXkO-czTlj4sSOPc4FE4IBcPhEDjgIXkml5Ocy11JWSgPfJ4cp3Rdea9Z8IfsSFLSNFgfk12KkC283uf-H9Pdd8P20pkub7bBNmeZAl2HMMQw03yE93_oY_uBocx9GusL8GOJfGjq66gtjI46YvpK9zg4Jv730Gbn5eXq9PK8ur84ulovLytVcQuWYF5LpVlhWWwkgOgR12znhJAqnBDSuUbVv6rLB1tYAnnctdN6B5q3XckaOd95NDA8TpmzWfXI4DHbEMCUjGs01l3WpGfnxDr0PUxzLd0YopkA3SopCzXeUiyGliJ3ZxH5t49ZwZp6zNs9Zm7esy8HRi3a6XaN_w1_DLUC7Ax77Abcf6MxidXH6X_4EV9aKDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707586732</pqid></control><display><type>article</type><title>An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes</title><source>Access via Wiley Online Library</source><creator>Chugh, Vishal ; Chatterjee, Basujit ; Chang, Wei‐Chieh ; Cramer, Hanna H. ; Hindemith, Carsten ; Randel, Helena ; Weyhermüller, Thomas ; Farès, Christophe ; Werlé, Christophe</creator><creatorcontrib>Chugh, Vishal ; Chatterjee, Basujit ; Chang, Wei‐Chieh ; Cramer, Hanna H. ; Hindemith, Carsten ; Randel, Helena ; Weyhermüller, Thomas ; Farès, Christophe ; Werlé, Christophe</creatorcontrib><description>An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. The competition for interaction with boron between a solvent molecule and a substrate was found crucial for adaptivity. When operating in THF, the reduction network stops at the hydroxylamine platform, whereas the reaction can be directed to the aniline platform in toluene.
An adaptive rhodium‐based catalyst for controlled hydrogenation of nitroarenes to hydroxylamines and anilines is presented. Both product platforms could be accessed under mild conditions and excellent yields using molecular hydrogen as the reducing agent. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202205515</identifier><identifier>PMID: 35759682</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adaptive Catalysis ; Adaptive control ; Adaptive systems ; Aniline ; Anilines ; Boron ; Catalysts ; Density functional theory ; Functional groups ; Hydrogenation ; Hydroxylamine ; Hydroxylamines ; Nitroarenes ; Rhodium ; Substrates ; Toluene</subject><ispartof>Angewandte Chemie International Edition, 2022-09, Vol.61 (36), p.e202205515-n/a</ispartof><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-c0d230892a04a3552fe57bfc2c3e2c7256c674d64c2ce9a455d1f95fdc5819d83</citedby><cites>FETCH-LOGICAL-c4135-c0d230892a04a3552fe57bfc2c3e2c7256c674d64c2ce9a455d1f95fdc5819d83</cites><orcidid>0000-0003-3539-089X ; 0000-0002-2798-8907 ; 0000-0001-7047-2511 ; 0000-0002-3875-4962 ; 0000-0002-2174-2148 ; 0000-0002-0399-7999 ; 0000-0003-1260-8913 ; 0000-0001-7495-8930 ; 0000-0001-6709-5057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202205515$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202205515$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35759682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chugh, Vishal</creatorcontrib><creatorcontrib>Chatterjee, Basujit</creatorcontrib><creatorcontrib>Chang, Wei‐Chieh</creatorcontrib><creatorcontrib>Cramer, Hanna H.</creatorcontrib><creatorcontrib>Hindemith, Carsten</creatorcontrib><creatorcontrib>Randel, Helena</creatorcontrib><creatorcontrib>Weyhermüller, Thomas</creatorcontrib><creatorcontrib>Farès, Christophe</creatorcontrib><creatorcontrib>Werlé, Christophe</creatorcontrib><title>An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. The competition for interaction with boron between a solvent molecule and a substrate was found crucial for adaptivity. When operating in THF, the reduction network stops at the hydroxylamine platform, whereas the reaction can be directed to the aniline platform in toluene.
An adaptive rhodium‐based catalyst for controlled hydrogenation of nitroarenes to hydroxylamines and anilines is presented. Both product platforms could be accessed under mild conditions and excellent yields using molecular hydrogen as the reducing agent. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity.</description><subject>Adaptive Catalysis</subject><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Aniline</subject><subject>Anilines</subject><subject>Boron</subject><subject>Catalysts</subject><subject>Density functional theory</subject><subject>Functional groups</subject><subject>Hydrogenation</subject><subject>Hydroxylamine</subject><subject>Hydroxylamines</subject><subject>Nitroarenes</subject><subject>Rhodium</subject><subject>Substrates</subject><subject>Toluene</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkN9LHDEQx0OpVL32tY8S6Isve-bHzib7eBxWBTlL0ecQk9m6dm9zJtnK_fdGTi344sMww_CZD8OXkO-czTlj4sSOPc4FE4IBcPhEDjgIXkml5Ocy11JWSgPfJ4cp3Rdea9Z8IfsSFLSNFgfk12KkC283uf-H9Pdd8P20pkub7bBNmeZAl2HMMQw03yE93_oY_uBocx9GusL8GOJfGjq66gtjI46YvpK9zg4Jv730Gbn5eXq9PK8ur84ulovLytVcQuWYF5LpVlhWWwkgOgR12znhJAqnBDSuUbVv6rLB1tYAnnctdN6B5q3XckaOd95NDA8TpmzWfXI4DHbEMCUjGs01l3WpGfnxDr0PUxzLd0YopkA3SopCzXeUiyGliJ3ZxH5t49ZwZp6zNs9Zm7esy8HRi3a6XaN_w1_DLUC7Ax77Abcf6MxidXH6X_4EV9aKDw</recordid><startdate>20220905</startdate><enddate>20220905</enddate><creator>Chugh, Vishal</creator><creator>Chatterjee, Basujit</creator><creator>Chang, Wei‐Chieh</creator><creator>Cramer, Hanna H.</creator><creator>Hindemith, Carsten</creator><creator>Randel, Helena</creator><creator>Weyhermüller, Thomas</creator><creator>Farès, Christophe</creator><creator>Werlé, Christophe</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3539-089X</orcidid><orcidid>https://orcid.org/0000-0002-2798-8907</orcidid><orcidid>https://orcid.org/0000-0001-7047-2511</orcidid><orcidid>https://orcid.org/0000-0002-3875-4962</orcidid><orcidid>https://orcid.org/0000-0002-2174-2148</orcidid><orcidid>https://orcid.org/0000-0002-0399-7999</orcidid><orcidid>https://orcid.org/0000-0003-1260-8913</orcidid><orcidid>https://orcid.org/0000-0001-7495-8930</orcidid><orcidid>https://orcid.org/0000-0001-6709-5057</orcidid></search><sort><creationdate>20220905</creationdate><title>An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes</title><author>Chugh, Vishal ; Chatterjee, Basujit ; Chang, Wei‐Chieh ; Cramer, Hanna H. ; Hindemith, Carsten ; Randel, Helena ; Weyhermüller, Thomas ; Farès, Christophe ; Werlé, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-c0d230892a04a3552fe57bfc2c3e2c7256c674d64c2ce9a455d1f95fdc5819d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive Catalysis</topic><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Aniline</topic><topic>Anilines</topic><topic>Boron</topic><topic>Catalysts</topic><topic>Density functional theory</topic><topic>Functional groups</topic><topic>Hydrogenation</topic><topic>Hydroxylamine</topic><topic>Hydroxylamines</topic><topic>Nitroarenes</topic><topic>Rhodium</topic><topic>Substrates</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chugh, Vishal</creatorcontrib><creatorcontrib>Chatterjee, Basujit</creatorcontrib><creatorcontrib>Chang, Wei‐Chieh</creatorcontrib><creatorcontrib>Cramer, Hanna H.</creatorcontrib><creatorcontrib>Hindemith, Carsten</creatorcontrib><creatorcontrib>Randel, Helena</creatorcontrib><creatorcontrib>Weyhermüller, Thomas</creatorcontrib><creatorcontrib>Farès, Christophe</creatorcontrib><creatorcontrib>Werlé, Christophe</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chugh, Vishal</au><au>Chatterjee, Basujit</au><au>Chang, Wei‐Chieh</au><au>Cramer, Hanna H.</au><au>Hindemith, Carsten</au><au>Randel, Helena</au><au>Weyhermüller, Thomas</au><au>Farès, Christophe</au><au>Werlé, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-09-05</date><risdate>2022</risdate><volume>61</volume><issue>36</issue><spage>e202205515</spage><epage>n/a</epage><pages>e202205515-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. The competition for interaction with boron between a solvent molecule and a substrate was found crucial for adaptivity. When operating in THF, the reduction network stops at the hydroxylamine platform, whereas the reaction can be directed to the aniline platform in toluene.
An adaptive rhodium‐based catalyst for controlled hydrogenation of nitroarenes to hydroxylamines and anilines is presented. Both product platforms could be accessed under mild conditions and excellent yields using molecular hydrogen as the reducing agent. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35759682</pmid><doi>10.1002/anie.202205515</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-3539-089X</orcidid><orcidid>https://orcid.org/0000-0002-2798-8907</orcidid><orcidid>https://orcid.org/0000-0001-7047-2511</orcidid><orcidid>https://orcid.org/0000-0002-3875-4962</orcidid><orcidid>https://orcid.org/0000-0002-2174-2148</orcidid><orcidid>https://orcid.org/0000-0002-0399-7999</orcidid><orcidid>https://orcid.org/0000-0003-1260-8913</orcidid><orcidid>https://orcid.org/0000-0001-7495-8930</orcidid><orcidid>https://orcid.org/0000-0001-6709-5057</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-09, Vol.61 (36), p.e202205515-n/a |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2681813481 |
source | Access via Wiley Online Library |
subjects | Adaptive Catalysis Adaptive control Adaptive systems Aniline Anilines Boron Catalysts Density functional theory Functional groups Hydrogenation Hydroxylamine Hydroxylamines Nitroarenes Rhodium Substrates Toluene |
title | An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Rhodium%20Catalyst%20to%20Control%20the%20Hydrogenation%20Network%20of%20Nitroarenes&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Chugh,%20Vishal&rft.date=2022-09-05&rft.volume=61&rft.issue=36&rft.spage=e202205515&rft.epage=n/a&rft.pages=e202205515-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202205515&rft_dat=%3Cproquest_cross%3E2681813481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707586732&rft_id=info:pmid/35759682&rfr_iscdi=true |