An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes

An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-09, Vol.61 (36), p.e202205515-n/a
Hauptverfasser: Chugh, Vishal, Chatterjee, Basujit, Chang, Wei‐Chieh, Cramer, Hanna H., Hindemith, Carsten, Randel, Helena, Weyhermüller, Thomas, Farès, Christophe, Werlé, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page e202205515
container_title Angewandte Chemie International Edition
container_volume 61
creator Chugh, Vishal
Chatterjee, Basujit
Chang, Wei‐Chieh
Cramer, Hanna H.
Hindemith, Carsten
Randel, Helena
Weyhermüller, Thomas
Farès, Christophe
Werlé, Christophe
description An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. The competition for interaction with boron between a solvent molecule and a substrate was found crucial for adaptivity. When operating in THF, the reduction network stops at the hydroxylamine platform, whereas the reaction can be directed to the aniline platform in toluene. An adaptive rhodium‐based catalyst for controlled hydrogenation of nitroarenes to hydroxylamines and anilines is presented. Both product platforms could be accessed under mild conditions and excellent yields using molecular hydrogen as the reducing agent. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity.
doi_str_mv 10.1002/anie.202205515
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681813481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681813481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-c0d230892a04a3552fe57bfc2c3e2c7256c674d64c2ce9a455d1f95fdc5819d83</originalsourceid><addsrcrecordid>eNqFkN9LHDEQx0OpVL32tY8S6Isve-bHzib7eBxWBTlL0ecQk9m6dm9zJtnK_fdGTi344sMww_CZD8OXkO-czTlj4sSOPc4FE4IBcPhEDjgIXkml5Ocy11JWSgPfJ4cp3Rdea9Z8IfsSFLSNFgfk12KkC283uf-H9Pdd8P20pkub7bBNmeZAl2HMMQw03yE93_oY_uBocx9GusL8GOJfGjq66gtjI46YvpK9zg4Jv730Gbn5eXq9PK8ur84ulovLytVcQuWYF5LpVlhWWwkgOgR12znhJAqnBDSuUbVv6rLB1tYAnnctdN6B5q3XckaOd95NDA8TpmzWfXI4DHbEMCUjGs01l3WpGfnxDr0PUxzLd0YopkA3SopCzXeUiyGliJ3ZxH5t49ZwZp6zNs9Zm7esy8HRi3a6XaN_w1_DLUC7Ax77Abcf6MxidXH6X_4EV9aKDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707586732</pqid></control><display><type>article</type><title>An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes</title><source>Access via Wiley Online Library</source><creator>Chugh, Vishal ; Chatterjee, Basujit ; Chang, Wei‐Chieh ; Cramer, Hanna H. ; Hindemith, Carsten ; Randel, Helena ; Weyhermüller, Thomas ; Farès, Christophe ; Werlé, Christophe</creator><creatorcontrib>Chugh, Vishal ; Chatterjee, Basujit ; Chang, Wei‐Chieh ; Cramer, Hanna H. ; Hindemith, Carsten ; Randel, Helena ; Weyhermüller, Thomas ; Farès, Christophe ; Werlé, Christophe</creatorcontrib><description>An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. The competition for interaction with boron between a solvent molecule and a substrate was found crucial for adaptivity. When operating in THF, the reduction network stops at the hydroxylamine platform, whereas the reaction can be directed to the aniline platform in toluene. An adaptive rhodium‐based catalyst for controlled hydrogenation of nitroarenes to hydroxylamines and anilines is presented. Both product platforms could be accessed under mild conditions and excellent yields using molecular hydrogen as the reducing agent. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202205515</identifier><identifier>PMID: 35759682</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adaptive Catalysis ; Adaptive control ; Adaptive systems ; Aniline ; Anilines ; Boron ; Catalysts ; Density functional theory ; Functional groups ; Hydrogenation ; Hydroxylamine ; Hydroxylamines ; Nitroarenes ; Rhodium ; Substrates ; Toluene</subject><ispartof>Angewandte Chemie International Edition, 2022-09, Vol.61 (36), p.e202205515-n/a</ispartof><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-c0d230892a04a3552fe57bfc2c3e2c7256c674d64c2ce9a455d1f95fdc5819d83</citedby><cites>FETCH-LOGICAL-c4135-c0d230892a04a3552fe57bfc2c3e2c7256c674d64c2ce9a455d1f95fdc5819d83</cites><orcidid>0000-0003-3539-089X ; 0000-0002-2798-8907 ; 0000-0001-7047-2511 ; 0000-0002-3875-4962 ; 0000-0002-2174-2148 ; 0000-0002-0399-7999 ; 0000-0003-1260-8913 ; 0000-0001-7495-8930 ; 0000-0001-6709-5057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202205515$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202205515$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35759682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chugh, Vishal</creatorcontrib><creatorcontrib>Chatterjee, Basujit</creatorcontrib><creatorcontrib>Chang, Wei‐Chieh</creatorcontrib><creatorcontrib>Cramer, Hanna H.</creatorcontrib><creatorcontrib>Hindemith, Carsten</creatorcontrib><creatorcontrib>Randel, Helena</creatorcontrib><creatorcontrib>Weyhermüller, Thomas</creatorcontrib><creatorcontrib>Farès, Christophe</creatorcontrib><creatorcontrib>Werlé, Christophe</creatorcontrib><title>An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. The competition for interaction with boron between a solvent molecule and a substrate was found crucial for adaptivity. When operating in THF, the reduction network stops at the hydroxylamine platform, whereas the reaction can be directed to the aniline platform in toluene. An adaptive rhodium‐based catalyst for controlled hydrogenation of nitroarenes to hydroxylamines and anilines is presented. Both product platforms could be accessed under mild conditions and excellent yields using molecular hydrogen as the reducing agent. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity.</description><subject>Adaptive Catalysis</subject><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Aniline</subject><subject>Anilines</subject><subject>Boron</subject><subject>Catalysts</subject><subject>Density functional theory</subject><subject>Functional groups</subject><subject>Hydrogenation</subject><subject>Hydroxylamine</subject><subject>Hydroxylamines</subject><subject>Nitroarenes</subject><subject>Rhodium</subject><subject>Substrates</subject><subject>Toluene</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkN9LHDEQx0OpVL32tY8S6Isve-bHzib7eBxWBTlL0ecQk9m6dm9zJtnK_fdGTi344sMww_CZD8OXkO-czTlj4sSOPc4FE4IBcPhEDjgIXkml5Ocy11JWSgPfJ4cp3Rdea9Z8IfsSFLSNFgfk12KkC283uf-H9Pdd8P20pkub7bBNmeZAl2HMMQw03yE93_oY_uBocx9GusL8GOJfGjq66gtjI46YvpK9zg4Jv730Gbn5eXq9PK8ur84ulovLytVcQuWYF5LpVlhWWwkgOgR12znhJAqnBDSuUbVv6rLB1tYAnnctdN6B5q3XckaOd95NDA8TpmzWfXI4DHbEMCUjGs01l3WpGfnxDr0PUxzLd0YopkA3SopCzXeUiyGliJ3ZxH5t49ZwZp6zNs9Zm7esy8HRi3a6XaN_w1_DLUC7Ax77Abcf6MxidXH6X_4EV9aKDw</recordid><startdate>20220905</startdate><enddate>20220905</enddate><creator>Chugh, Vishal</creator><creator>Chatterjee, Basujit</creator><creator>Chang, Wei‐Chieh</creator><creator>Cramer, Hanna H.</creator><creator>Hindemith, Carsten</creator><creator>Randel, Helena</creator><creator>Weyhermüller, Thomas</creator><creator>Farès, Christophe</creator><creator>Werlé, Christophe</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3539-089X</orcidid><orcidid>https://orcid.org/0000-0002-2798-8907</orcidid><orcidid>https://orcid.org/0000-0001-7047-2511</orcidid><orcidid>https://orcid.org/0000-0002-3875-4962</orcidid><orcidid>https://orcid.org/0000-0002-2174-2148</orcidid><orcidid>https://orcid.org/0000-0002-0399-7999</orcidid><orcidid>https://orcid.org/0000-0003-1260-8913</orcidid><orcidid>https://orcid.org/0000-0001-7495-8930</orcidid><orcidid>https://orcid.org/0000-0001-6709-5057</orcidid></search><sort><creationdate>20220905</creationdate><title>An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes</title><author>Chugh, Vishal ; Chatterjee, Basujit ; Chang, Wei‐Chieh ; Cramer, Hanna H. ; Hindemith, Carsten ; Randel, Helena ; Weyhermüller, Thomas ; Farès, Christophe ; Werlé, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-c0d230892a04a3552fe57bfc2c3e2c7256c674d64c2ce9a455d1f95fdc5819d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive Catalysis</topic><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Aniline</topic><topic>Anilines</topic><topic>Boron</topic><topic>Catalysts</topic><topic>Density functional theory</topic><topic>Functional groups</topic><topic>Hydrogenation</topic><topic>Hydroxylamine</topic><topic>Hydroxylamines</topic><topic>Nitroarenes</topic><topic>Rhodium</topic><topic>Substrates</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chugh, Vishal</creatorcontrib><creatorcontrib>Chatterjee, Basujit</creatorcontrib><creatorcontrib>Chang, Wei‐Chieh</creatorcontrib><creatorcontrib>Cramer, Hanna H.</creatorcontrib><creatorcontrib>Hindemith, Carsten</creatorcontrib><creatorcontrib>Randel, Helena</creatorcontrib><creatorcontrib>Weyhermüller, Thomas</creatorcontrib><creatorcontrib>Farès, Christophe</creatorcontrib><creatorcontrib>Werlé, Christophe</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chugh, Vishal</au><au>Chatterjee, Basujit</au><au>Chang, Wei‐Chieh</au><au>Cramer, Hanna H.</au><au>Hindemith, Carsten</au><au>Randel, Helena</au><au>Weyhermüller, Thomas</au><au>Farès, Christophe</au><au>Werlé, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-09-05</date><risdate>2022</risdate><volume>61</volume><issue>36</issue><spage>e202205515</spage><epage>n/a</epage><pages>e202205515-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. The competition for interaction with boron between a solvent molecule and a substrate was found crucial for adaptivity. When operating in THF, the reduction network stops at the hydroxylamine platform, whereas the reaction can be directed to the aniline platform in toluene. An adaptive rhodium‐based catalyst for controlled hydrogenation of nitroarenes to hydroxylamines and anilines is presented. Both product platforms could be accessed under mild conditions and excellent yields using molecular hydrogen as the reducing agent. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35759682</pmid><doi>10.1002/anie.202205515</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-3539-089X</orcidid><orcidid>https://orcid.org/0000-0002-2798-8907</orcidid><orcidid>https://orcid.org/0000-0001-7047-2511</orcidid><orcidid>https://orcid.org/0000-0002-3875-4962</orcidid><orcidid>https://orcid.org/0000-0002-2174-2148</orcidid><orcidid>https://orcid.org/0000-0002-0399-7999</orcidid><orcidid>https://orcid.org/0000-0003-1260-8913</orcidid><orcidid>https://orcid.org/0000-0001-7495-8930</orcidid><orcidid>https://orcid.org/0000-0001-6709-5057</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-09, Vol.61 (36), p.e202205515-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2681813481
source Access via Wiley Online Library
subjects Adaptive Catalysis
Adaptive control
Adaptive systems
Aniline
Anilines
Boron
Catalysts
Density functional theory
Functional groups
Hydrogenation
Hydroxylamine
Hydroxylamines
Nitroarenes
Rhodium
Substrates
Toluene
title An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Rhodium%20Catalyst%20to%20Control%20the%20Hydrogenation%20Network%20of%20Nitroarenes&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Chugh,%20Vishal&rft.date=2022-09-05&rft.volume=61&rft.issue=36&rft.spage=e202205515&rft.epage=n/a&rft.pages=e202205515-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202205515&rft_dat=%3Cproquest_cross%3E2681813481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707586732&rft_id=info:pmid/35759682&rfr_iscdi=true