A moving mesh method for one-dimensional hyperbolic conservation laws

We develop an adaptive method for solving one-dimensional systems of hyperbolic conservation laws that employs a high resolution Godunov-type scheme for the physical equations, in conjunction with a moving mesh PDE governing the motion of the spatial grid points. Many other moving mesh methods devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2001, Vol.22 (5), p.1791-1813
Hauptverfasser: STOCKIE, John M, MACKENZIE, John A, RUSSELL, Robert D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1813
container_issue 5
container_start_page 1791
container_title SIAM journal on scientific computing
container_volume 22
creator STOCKIE, John M
MACKENZIE, John A
RUSSELL, Robert D
description We develop an adaptive method for solving one-dimensional systems of hyperbolic conservation laws that employs a high resolution Godunov-type scheme for the physical equations, in conjunction with a moving mesh PDE governing the motion of the spatial grid points. Many other moving mesh methods developed to solve hyperbolic problems use a fully implicit discretization for the coupled solution-mesh equations, and so suffer from a significant degree of numerical stiffness. We employ a semi-implicit approach that couples the moving mesh equation to an efficient, explicit solver for the physical PDE, with the resulting scheme behaving in practice as a two-step predictor-corrector method. In comparison with computations on a fixed, uniform mesh, our method exhibits more accurate resolution of discontinuities for a similar level of computational work.
doi_str_mv 10.1137/s1064827599364428
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26817165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585583591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-b22f9df632b1d2c8ce03526c9c25ac9625c3a2fb5a6865902be28c36b21017573</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRsFb_AG9B0Ft0d_YreyylfkDBg3oOm83GpiTZupNW-t-b0ILQy8zA-70H8wi5ZfSRMa6fkFElMtDSGK6EgOyMTBg1MtXM6PPxViId9UtyhbimlClhYEIWs6QNu7r7TlqPq2H0q1AmVYhJ6Hxa1q3vsA6dbZLVfuNjEZraJS506OPO9oOSNPYXr8lFZRv0N8c9JV_Pi8_5a7p8f3mbz5apE4L2aQFQmbJSHApWgsucp1yCcsaBtM4okI5bqAppVaakoVB4yBxXBTDKtNR8Sh4OuZsYfrYe-7yt0fmmsZ0PW8xBZUwzJQfw7gRch20c3sDcAONc0WyE2AFyMSBGX-WbWLc27nNG87HV_OO01cFzfwy26GxTRdu5Gv-NgmrQgvE_C4l1-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921336085</pqid></control><display><type>article</type><title>A moving mesh method for one-dimensional hyperbolic conservation laws</title><source>SIAM Journals Online</source><creator>STOCKIE, John M ; MACKENZIE, John A ; RUSSELL, Robert D</creator><creatorcontrib>STOCKIE, John M ; MACKENZIE, John A ; RUSSELL, Robert D</creatorcontrib><description>We develop an adaptive method for solving one-dimensional systems of hyperbolic conservation laws that employs a high resolution Godunov-type scheme for the physical equations, in conjunction with a moving mesh PDE governing the motion of the spatial grid points. Many other moving mesh methods developed to solve hyperbolic problems use a fully implicit discretization for the coupled solution-mesh equations, and so suffer from a significant degree of numerical stiffness. We employ a semi-implicit approach that couples the moving mesh equation to an efficient, explicit solver for the physical PDE, with the resulting scheme behaving in practice as a two-step predictor-corrector method. In comparison with computations on a fixed, uniform mesh, our method exhibits more accurate resolution of discontinuities for a similar level of computational work.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/s1064827599364428</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Applied mathematics ; Compressible flows; shock and detonation phenomena ; Conservation laws ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematics ; Methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Physics ; Propagation ; Sciences and techniques of general use ; Shock-wave interactions and shock effects</subject><ispartof>SIAM journal on scientific computing, 2001, Vol.22 (5), p.1791-1813</ispartof><rights>2002 INIST-CNRS</rights><rights>[Copyright] © 2001 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-b22f9df632b1d2c8ce03526c9c25ac9625c3a2fb5a6865902be28c36b21017573</citedby><cites>FETCH-LOGICAL-c440t-b22f9df632b1d2c8ce03526c9c25ac9625c3a2fb5a6865902be28c36b21017573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3183,4023,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14072741$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>STOCKIE, John M</creatorcontrib><creatorcontrib>MACKENZIE, John A</creatorcontrib><creatorcontrib>RUSSELL, Robert D</creatorcontrib><title>A moving mesh method for one-dimensional hyperbolic conservation laws</title><title>SIAM journal on scientific computing</title><description>We develop an adaptive method for solving one-dimensional systems of hyperbolic conservation laws that employs a high resolution Godunov-type scheme for the physical equations, in conjunction with a moving mesh PDE governing the motion of the spatial grid points. Many other moving mesh methods developed to solve hyperbolic problems use a fully implicit discretization for the coupled solution-mesh equations, and so suffer from a significant degree of numerical stiffness. We employ a semi-implicit approach that couples the moving mesh equation to an efficient, explicit solver for the physical PDE, with the resulting scheme behaving in practice as a two-step predictor-corrector method. In comparison with computations on a fixed, uniform mesh, our method exhibits more accurate resolution of discontinuities for a similar level of computational work.</description><subject>Accuracy</subject><subject>Applied mathematics</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Conservation laws</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Physics</subject><subject>Propagation</subject><subject>Sciences and techniques of general use</subject><subject>Shock-wave interactions and shock effects</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkM1Lw0AQxRdRsFb_AG9B0Ft0d_YreyylfkDBg3oOm83GpiTZupNW-t-b0ILQy8zA-70H8wi5ZfSRMa6fkFElMtDSGK6EgOyMTBg1MtXM6PPxViId9UtyhbimlClhYEIWs6QNu7r7TlqPq2H0q1AmVYhJ6Hxa1q3vsA6dbZLVfuNjEZraJS506OPO9oOSNPYXr8lFZRv0N8c9JV_Pi8_5a7p8f3mbz5apE4L2aQFQmbJSHApWgsucp1yCcsaBtM4okI5bqAppVaakoVB4yBxXBTDKtNR8Sh4OuZsYfrYe-7yt0fmmsZ0PW8xBZUwzJQfw7gRch20c3sDcAONc0WyE2AFyMSBGX-WbWLc27nNG87HV_OO01cFzfwy26GxTRdu5Gv-NgmrQgvE_C4l1-A</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>STOCKIE, John M</creator><creator>MACKENZIE, John A</creator><creator>RUSSELL, Robert D</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2001</creationdate><title>A moving mesh method for one-dimensional hyperbolic conservation laws</title><author>STOCKIE, John M ; MACKENZIE, John A ; RUSSELL, Robert D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-b22f9df632b1d2c8ce03526c9c25ac9625c3a2fb5a6865902be28c36b21017573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Accuracy</topic><topic>Applied mathematics</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Conservation laws</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Physics</topic><topic>Propagation</topic><topic>Sciences and techniques of general use</topic><topic>Shock-wave interactions and shock effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>STOCKIE, John M</creatorcontrib><creatorcontrib>MACKENZIE, John A</creatorcontrib><creatorcontrib>RUSSELL, Robert D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>STOCKIE, John M</au><au>MACKENZIE, John A</au><au>RUSSELL, Robert D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A moving mesh method for one-dimensional hyperbolic conservation laws</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2001</date><risdate>2001</risdate><volume>22</volume><issue>5</issue><spage>1791</spage><epage>1813</epage><pages>1791-1813</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>We develop an adaptive method for solving one-dimensional systems of hyperbolic conservation laws that employs a high resolution Godunov-type scheme for the physical equations, in conjunction with a moving mesh PDE governing the motion of the spatial grid points. Many other moving mesh methods developed to solve hyperbolic problems use a fully implicit discretization for the coupled solution-mesh equations, and so suffer from a significant degree of numerical stiffness. We employ a semi-implicit approach that couples the moving mesh equation to an efficient, explicit solver for the physical PDE, with the resulting scheme behaving in practice as a two-step predictor-corrector method. In comparison with computations on a fixed, uniform mesh, our method exhibits more accurate resolution of discontinuities for a similar level of computational work.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/s1064827599364428</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2001, Vol.22 (5), p.1791-1813
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_miscellaneous_26817165
source SIAM Journals Online
subjects Accuracy
Applied mathematics
Compressible flows
shock and detonation phenomena
Conservation laws
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematics
Methods
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Physics
Propagation
Sciences and techniques of general use
Shock-wave interactions and shock effects
title A moving mesh method for one-dimensional hyperbolic conservation laws
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20moving%20mesh%20method%20for%20one-dimensional%20hyperbolic%20conservation%20laws&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=STOCKIE,%20John%20M&rft.date=2001&rft.volume=22&rft.issue=5&rft.spage=1791&rft.epage=1813&rft.pages=1791-1813&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/s1064827599364428&rft_dat=%3Cproquest_cross%3E2585583591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921336085&rft_id=info:pmid/&rfr_iscdi=true