Performance enhancement of an uncertain nonlinear medical robot with optimal nonlinear robust controller
Cardiopulmonary resuscitation refers to the process of sending oxygen and blood to the body's vital organs during cardiac arrest. For this reason, designing and controlling an accurate robot is crucial to saving the lives of patients. This study aims to optimize two nonlinear robust controllers...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2022-07, Vol.146, p.105567-105567, Article 105567 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105567 |
---|---|
container_issue | |
container_start_page | 105567 |
container_title | Computers in biology and medicine |
container_volume | 146 |
creator | Azizi, SeyedArmin Soleimani, Reza Ahmadi, Mohsen Malekan, Ali Abualigah, Laith Dashtiahangar, Fatemeh |
description | Cardiopulmonary resuscitation refers to the process of sending oxygen and blood to the body's vital organs during cardiac arrest. For this reason, designing and controlling an accurate robot is crucial to saving the lives of patients. This study aims to optimize two nonlinear robust controllers for the first time for the parallel manipulator for cardiopulmonary resuscitation to reduce overshoot, increase accuracy, increase convergence speed, and increase robustness to destructive factors affecting the precision of the robots. The paper first presents the kinematics and dynamics of a translational parallel manipulator robot. Then, to reduce the difference between the practical and simulation results, the paper presents a nonlinear model under uncertainties, disturbances, and noise. Then, the ONSTSMC awaiting the uncertainty band is designed to eliminate the singularity problem and increase the accuracy and robustness to destructive factors, as well as improve stability using the Lyapunov principle. Furthermore, the results of applying this robust controller to the robot are compared with the results of a non-singular terminal sliding mode controller without considering the uncertainty band, a conventional sliding mode controller, and a PID controller for the same model. The developed controller exhibits better performance in terms of accuracy and convergence time even when external and internal destructive factors are present. The accuracy is 0.21 mm and the convergence time is 0.7 seconds when compared with PID. Furthermore, it is approximately 0.17 mm and 0.4 seconds faster compared with conventional sliding mode controllers.
•Modification of the model and designing two optimized nonlinear robust controllers.•Design and control of an accurate parallel manipulator medical robot and cardiopulmonary resuscitation.•Increase the accuracy of the position and convergence speed, and robustness to destructive factors affecting the robot's precision.•An ONSTSMC awaiting the uncertainty band eliminates the singularity problem and improves accuracy and robustness. |
doi_str_mv | 10.1016/j.compbiomed.2022.105567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681045411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482522003596</els_id><sourcerecordid>2681045411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ebe01290c8eee1bd17b7b3eb0343cd3e896f48247e04af3d49ae6ed0b0bfb3c93</originalsourceid><addsrcrecordid>eNqFkU1LBDEMhosouH78h4IXL7Om087XUcUvWNCDnkvbybBdZtq17Sj-e7usIHjxFJI-SfrmJYQyWDJg9dVmafy01dZP2C9LKMtcrqq6OSAL1jZdARUXh2QBwKAQbVkdk5MYNwAggMOCrF8wDD5Myhmk6Na7OKFL1A9UOTrnNCRlHXXejdahCjQvskaNNHjtE_20aU39Ntkpl36h_DjHRI13KfhxxHBGjgY1Rjz_iafk7f7u9faxWD0_PN1erwrDmy4VqBFY2YFpEZHpnjW60Rw1cMFNz7Ht6iHLEA2CUAPvRaewxh406EFz0_FTcrmfuw3-fcaY5GSjwXFUDv0cZVm3DEQlGMvoxR904-fg8u8y1bSsq5sKMtXuKRN8jAEHuQ1ZbPiSDOTOArmRvxbInQVyb0Fuvdm3Yhb8YTHIaCzmk_Y2oEmy9_b_Id9Xnpcv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678196750</pqid></control><display><type>article</type><title>Performance enhancement of an uncertain nonlinear medical robot with optimal nonlinear robust controller</title><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Azizi, SeyedArmin ; Soleimani, Reza ; Ahmadi, Mohsen ; Malekan, Ali ; Abualigah, Laith ; Dashtiahangar, Fatemeh</creator><creatorcontrib>Azizi, SeyedArmin ; Soleimani, Reza ; Ahmadi, Mohsen ; Malekan, Ali ; Abualigah, Laith ; Dashtiahangar, Fatemeh</creatorcontrib><description>Cardiopulmonary resuscitation refers to the process of sending oxygen and blood to the body's vital organs during cardiac arrest. For this reason, designing and controlling an accurate robot is crucial to saving the lives of patients. This study aims to optimize two nonlinear robust controllers for the first time for the parallel manipulator for cardiopulmonary resuscitation to reduce overshoot, increase accuracy, increase convergence speed, and increase robustness to destructive factors affecting the precision of the robots. The paper first presents the kinematics and dynamics of a translational parallel manipulator robot. Then, to reduce the difference between the practical and simulation results, the paper presents a nonlinear model under uncertainties, disturbances, and noise. Then, the ONSTSMC awaiting the uncertainty band is designed to eliminate the singularity problem and increase the accuracy and robustness to destructive factors, as well as improve stability using the Lyapunov principle. Furthermore, the results of applying this robust controller to the robot are compared with the results of a non-singular terminal sliding mode controller without considering the uncertainty band, a conventional sliding mode controller, and a PID controller for the same model. The developed controller exhibits better performance in terms of accuracy and convergence time even when external and internal destructive factors are present. The accuracy is 0.21 mm and the convergence time is 0.7 seconds when compared with PID. Furthermore, it is approximately 0.17 mm and 0.4 seconds faster compared with conventional sliding mode controllers.
•Modification of the model and designing two optimized nonlinear robust controllers.•Design and control of an accurate parallel manipulator medical robot and cardiopulmonary resuscitation.•Increase the accuracy of the position and convergence speed, and robustness to destructive factors affecting the robot's precision.•An ONSTSMC awaiting the uncertainty band eliminates the singularity problem and improves accuracy and robustness.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2022.105567</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Accuracy ; Cardiopulmonary resuscitation ; Control algorithms ; Controllers ; Convergence ; CPR ; Design ; Fractures ; Hospitals ; Kinematics ; Manipulators ; Medical robots ; Neural networks ; Nonlinear control ; Optimization ; Organs ; Performance enhancement ; Proportional integral derivative ; Resuscitation ; Robot arms ; Robotics ; Robots ; Robust control ; Sliding mode control ; Uncertainty</subject><ispartof>Computers in biology and medicine, 2022-07, Vol.146, p.105567-105567, Article 105567</ispartof><rights>2022 Elsevier Ltd</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ebe01290c8eee1bd17b7b3eb0343cd3e896f48247e04af3d49ae6ed0b0bfb3c93</citedby><cites>FETCH-LOGICAL-c379t-ebe01290c8eee1bd17b7b3eb0343cd3e896f48247e04af3d49ae6ed0b0bfb3c93</cites><orcidid>0000-0003-1550-110X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2678196750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994,64384,64386,64388,72340</link.rule.ids></links><search><creatorcontrib>Azizi, SeyedArmin</creatorcontrib><creatorcontrib>Soleimani, Reza</creatorcontrib><creatorcontrib>Ahmadi, Mohsen</creatorcontrib><creatorcontrib>Malekan, Ali</creatorcontrib><creatorcontrib>Abualigah, Laith</creatorcontrib><creatorcontrib>Dashtiahangar, Fatemeh</creatorcontrib><title>Performance enhancement of an uncertain nonlinear medical robot with optimal nonlinear robust controller</title><title>Computers in biology and medicine</title><description>Cardiopulmonary resuscitation refers to the process of sending oxygen and blood to the body's vital organs during cardiac arrest. For this reason, designing and controlling an accurate robot is crucial to saving the lives of patients. This study aims to optimize two nonlinear robust controllers for the first time for the parallel manipulator for cardiopulmonary resuscitation to reduce overshoot, increase accuracy, increase convergence speed, and increase robustness to destructive factors affecting the precision of the robots. The paper first presents the kinematics and dynamics of a translational parallel manipulator robot. Then, to reduce the difference between the practical and simulation results, the paper presents a nonlinear model under uncertainties, disturbances, and noise. Then, the ONSTSMC awaiting the uncertainty band is designed to eliminate the singularity problem and increase the accuracy and robustness to destructive factors, as well as improve stability using the Lyapunov principle. Furthermore, the results of applying this robust controller to the robot are compared with the results of a non-singular terminal sliding mode controller without considering the uncertainty band, a conventional sliding mode controller, and a PID controller for the same model. The developed controller exhibits better performance in terms of accuracy and convergence time even when external and internal destructive factors are present. The accuracy is 0.21 mm and the convergence time is 0.7 seconds when compared with PID. Furthermore, it is approximately 0.17 mm and 0.4 seconds faster compared with conventional sliding mode controllers.
•Modification of the model and designing two optimized nonlinear robust controllers.•Design and control of an accurate parallel manipulator medical robot and cardiopulmonary resuscitation.•Increase the accuracy of the position and convergence speed, and robustness to destructive factors affecting the robot's precision.•An ONSTSMC awaiting the uncertainty band eliminates the singularity problem and improves accuracy and robustness.</description><subject>Accuracy</subject><subject>Cardiopulmonary resuscitation</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Convergence</subject><subject>CPR</subject><subject>Design</subject><subject>Fractures</subject><subject>Hospitals</subject><subject>Kinematics</subject><subject>Manipulators</subject><subject>Medical robots</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Optimization</subject><subject>Organs</subject><subject>Performance enhancement</subject><subject>Proportional integral derivative</subject><subject>Resuscitation</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Robots</subject><subject>Robust control</subject><subject>Sliding mode control</subject><subject>Uncertainty</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1LBDEMhosouH78h4IXL7Om087XUcUvWNCDnkvbybBdZtq17Sj-e7usIHjxFJI-SfrmJYQyWDJg9dVmafy01dZP2C9LKMtcrqq6OSAL1jZdARUXh2QBwKAQbVkdk5MYNwAggMOCrF8wDD5Myhmk6Na7OKFL1A9UOTrnNCRlHXXejdahCjQvskaNNHjtE_20aU39Ntkpl36h_DjHRI13KfhxxHBGjgY1Rjz_iafk7f7u9faxWD0_PN1erwrDmy4VqBFY2YFpEZHpnjW60Rw1cMFNz7Ht6iHLEA2CUAPvRaewxh406EFz0_FTcrmfuw3-fcaY5GSjwXFUDv0cZVm3DEQlGMvoxR904-fg8u8y1bSsq5sKMtXuKRN8jAEHuQ1ZbPiSDOTOArmRvxbInQVyb0Fuvdm3Yhb8YTHIaCzmk_Y2oEmy9_b_Id9Xnpcv</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Azizi, SeyedArmin</creator><creator>Soleimani, Reza</creator><creator>Ahmadi, Mohsen</creator><creator>Malekan, Ali</creator><creator>Abualigah, Laith</creator><creator>Dashtiahangar, Fatemeh</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1550-110X</orcidid></search><sort><creationdate>202207</creationdate><title>Performance enhancement of an uncertain nonlinear medical robot with optimal nonlinear robust controller</title><author>Azizi, SeyedArmin ; Soleimani, Reza ; Ahmadi, Mohsen ; Malekan, Ali ; Abualigah, Laith ; Dashtiahangar, Fatemeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ebe01290c8eee1bd17b7b3eb0343cd3e896f48247e04af3d49ae6ed0b0bfb3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Cardiopulmonary resuscitation</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Convergence</topic><topic>CPR</topic><topic>Design</topic><topic>Fractures</topic><topic>Hospitals</topic><topic>Kinematics</topic><topic>Manipulators</topic><topic>Medical robots</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Optimization</topic><topic>Organs</topic><topic>Performance enhancement</topic><topic>Proportional integral derivative</topic><topic>Resuscitation</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Robots</topic><topic>Robust control</topic><topic>Sliding mode control</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azizi, SeyedArmin</creatorcontrib><creatorcontrib>Soleimani, Reza</creatorcontrib><creatorcontrib>Ahmadi, Mohsen</creatorcontrib><creatorcontrib>Malekan, Ali</creatorcontrib><creatorcontrib>Abualigah, Laith</creatorcontrib><creatorcontrib>Dashtiahangar, Fatemeh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azizi, SeyedArmin</au><au>Soleimani, Reza</au><au>Ahmadi, Mohsen</au><au>Malekan, Ali</au><au>Abualigah, Laith</au><au>Dashtiahangar, Fatemeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance enhancement of an uncertain nonlinear medical robot with optimal nonlinear robust controller</atitle><jtitle>Computers in biology and medicine</jtitle><date>2022-07</date><risdate>2022</risdate><volume>146</volume><spage>105567</spage><epage>105567</epage><pages>105567-105567</pages><artnum>105567</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Cardiopulmonary resuscitation refers to the process of sending oxygen and blood to the body's vital organs during cardiac arrest. For this reason, designing and controlling an accurate robot is crucial to saving the lives of patients. This study aims to optimize two nonlinear robust controllers for the first time for the parallel manipulator for cardiopulmonary resuscitation to reduce overshoot, increase accuracy, increase convergence speed, and increase robustness to destructive factors affecting the precision of the robots. The paper first presents the kinematics and dynamics of a translational parallel manipulator robot. Then, to reduce the difference between the practical and simulation results, the paper presents a nonlinear model under uncertainties, disturbances, and noise. Then, the ONSTSMC awaiting the uncertainty band is designed to eliminate the singularity problem and increase the accuracy and robustness to destructive factors, as well as improve stability using the Lyapunov principle. Furthermore, the results of applying this robust controller to the robot are compared with the results of a non-singular terminal sliding mode controller without considering the uncertainty band, a conventional sliding mode controller, and a PID controller for the same model. The developed controller exhibits better performance in terms of accuracy and convergence time even when external and internal destructive factors are present. The accuracy is 0.21 mm and the convergence time is 0.7 seconds when compared with PID. Furthermore, it is approximately 0.17 mm and 0.4 seconds faster compared with conventional sliding mode controllers.
•Modification of the model and designing two optimized nonlinear robust controllers.•Design and control of an accurate parallel manipulator medical robot and cardiopulmonary resuscitation.•Increase the accuracy of the position and convergence speed, and robustness to destructive factors affecting the robot's precision.•An ONSTSMC awaiting the uncertainty band eliminates the singularity problem and improves accuracy and robustness.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compbiomed.2022.105567</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1550-110X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2022-07, Vol.146, p.105567-105567, Article 105567 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2681045411 |
source | ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Accuracy Cardiopulmonary resuscitation Control algorithms Controllers Convergence CPR Design Fractures Hospitals Kinematics Manipulators Medical robots Neural networks Nonlinear control Optimization Organs Performance enhancement Proportional integral derivative Resuscitation Robot arms Robotics Robots Robust control Sliding mode control Uncertainty |
title | Performance enhancement of an uncertain nonlinear medical robot with optimal nonlinear robust controller |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20enhancement%20of%20an%20uncertain%20nonlinear%20medical%20robot%20with%20optimal%20nonlinear%20robust%20controller&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Azizi,%20SeyedArmin&rft.date=2022-07&rft.volume=146&rft.spage=105567&rft.epage=105567&rft.pages=105567-105567&rft.artnum=105567&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2022.105567&rft_dat=%3Cproquest_cross%3E2681045411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678196750&rft_id=info:pmid/&rft_els_id=S0010482522003596&rfr_iscdi=true |