Turbostratic Boron–Carbon–Nitrogen and Boron Nitride by Flash Joule Heating

Turbostratic layers in 2D materials have an interlayer misalignment. The lack of alignment expands the intrinsic interlayer distances and weakens the optical and electronic interactions between adjacent layers. This introduces properties distinct from those structures with well‐aligned lattices and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-08, Vol.34 (33), p.e2202666-n/a
Hauptverfasser: Chen, Weiyin, Li, John Tianci, Ge, Chang, Yuan, Zhe, Algozeeb, Wala A., Advincula, Paul A., Gao, Guanhui, Chen, Jinhang, Ling, Kexin, Choi, Chi Hun, McHugh, Emily A., Wyss, Kevin M., Luong, Duy Xuan, Wang, Zhe, Han, Yimo, Tour, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page e2202666
container_title Advanced materials (Weinheim)
container_volume 34
creator Chen, Weiyin
Li, John Tianci
Ge, Chang
Yuan, Zhe
Algozeeb, Wala A.
Advincula, Paul A.
Gao, Guanhui
Chen, Jinhang
Ling, Kexin
Choi, Chi Hun
McHugh, Emily A.
Wyss, Kevin M.
Luong, Duy Xuan
Wang, Zhe
Han, Yimo
Tour, James M.
description Turbostratic layers in 2D materials have an interlayer misalignment. The lack of alignment expands the intrinsic interlayer distances and weakens the optical and electronic interactions between adjacent layers. This introduces properties distinct from those structures with well‐aligned lattices and strong coupling interactions. However, direct and rapid synthesis of turbostratic materials remains a challenge owing to their thermodynamically metastable properties. Here, a flash Joule heating (FJH) method to achieve bulk synthesis of boron–carbon–nitrogen ternary compounds with turbostratic structures by a kinetically controlled ultrafast cooling process that takes place within milliseconds (103 to 104 K s−1) is reported. Theoretical calculations support the existence of turbostratic structures and provide estimates of the energy barriers with respect to conversion into the corresponding well‐aligned counterparts. When using non‐carbon conductive additives, a direct synthesis of boron nitride is possible. The turbostratic nature facilitates mechanical exfoliation and more stable dispersions. Accordingly, the addition of flash products to a poly(vinyl alcohol) nanocomposite film coating a copper surface greatly improves the copper's resistance to corrosion in 0.5 m sulfuric acid or 3.5 wt% saline solution. FJH allows the use of bulk materials as reactants and provides a rapid approach to large quantities of the hitherto hard‐to‐access turbostratic materials. Turbostratic boron–carbon–nitrogen and boron nitride compounds with various chemical compositions can be prepared by the ultrafast and solvent‐free flash Joule heating method. The obtained flash boron–carbon–nitrogen (f‐BCN) is easily exfoliated via various mechanical methods. Compared to commercial hexagonal boron nitride nanoplates, flash boron nitride sheets demonstrate more stable dispersibility in aqueous solution. Furthermore, the addition of f‐BCN as barrier fillers in poly(vinyl alcohol) nanocomposites shows higher corrosion protection efficiency, ≈97.3% in 0.5 m H2SO4 and ≈92.1% in 3.5 wt% NaCl (aq).
doi_str_mv 10.1002/adma.202202666
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681032743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681032743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3506-a6d23987e8634664dd9de23850231f5182f13c154c6423dc37d5469a790ed3973</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQxhdRsFavngNevKTO_k32WKu1SrWXel622U1NSbN1N0F68x18Q5_EhIiCF2Fghpnf9zF8CJ1jGGEAcqXNVo8IkLaEEAdogDnBMQPJD9EAJOWxFCw9RichbABAChADtFg2fuVC7XVdZNG18676fP-Y6HbZDU9F7d3aVpGuTH-NulVhbLTaR9NSh5fowTWljWa2dajWp-go12WwZ999iJ6nt8vJLJ4v7u4n43mcUQ4i1sIQKtPEpoIyIZgx0lhCUw6E4pzjlOSYZpizTDBCTUYTw5mQOpFgDZUJHaLL3nfn3WtjQ622RchsWerKuiYoIlIMlCSMtujFH3TjGl-13ymSAKWCS5G21KinMu9C8DZXO19std8rDKrLV3X5qp98W4HsBW9Faff_0Gp88zj-1X4Bnuh-Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703365968</pqid></control><display><type>article</type><title>Turbostratic Boron–Carbon–Nitrogen and Boron Nitride by Flash Joule Heating</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Weiyin ; Li, John Tianci ; Ge, Chang ; Yuan, Zhe ; Algozeeb, Wala A. ; Advincula, Paul A. ; Gao, Guanhui ; Chen, Jinhang ; Ling, Kexin ; Choi, Chi Hun ; McHugh, Emily A. ; Wyss, Kevin M. ; Luong, Duy Xuan ; Wang, Zhe ; Han, Yimo ; Tour, James M.</creator><creatorcontrib>Chen, Weiyin ; Li, John Tianci ; Ge, Chang ; Yuan, Zhe ; Algozeeb, Wala A. ; Advincula, Paul A. ; Gao, Guanhui ; Chen, Jinhang ; Ling, Kexin ; Choi, Chi Hun ; McHugh, Emily A. ; Wyss, Kevin M. ; Luong, Duy Xuan ; Wang, Zhe ; Han, Yimo ; Tour, James M.</creatorcontrib><description>Turbostratic layers in 2D materials have an interlayer misalignment. The lack of alignment expands the intrinsic interlayer distances and weakens the optical and electronic interactions between adjacent layers. This introduces properties distinct from those structures with well‐aligned lattices and strong coupling interactions. However, direct and rapid synthesis of turbostratic materials remains a challenge owing to their thermodynamically metastable properties. Here, a flash Joule heating (FJH) method to achieve bulk synthesis of boron–carbon–nitrogen ternary compounds with turbostratic structures by a kinetically controlled ultrafast cooling process that takes place within milliseconds (103 to 104 K s−1) is reported. Theoretical calculations support the existence of turbostratic structures and provide estimates of the energy barriers with respect to conversion into the corresponding well‐aligned counterparts. When using non‐carbon conductive additives, a direct synthesis of boron nitride is possible. The turbostratic nature facilitates mechanical exfoliation and more stable dispersions. Accordingly, the addition of flash products to a poly(vinyl alcohol) nanocomposite film coating a copper surface greatly improves the copper's resistance to corrosion in 0.5 m sulfuric acid or 3.5 wt% saline solution. FJH allows the use of bulk materials as reactants and provides a rapid approach to large quantities of the hitherto hard‐to‐access turbostratic materials. Turbostratic boron–carbon–nitrogen and boron nitride compounds with various chemical compositions can be prepared by the ultrafast and solvent‐free flash Joule heating method. The obtained flash boron–carbon–nitrogen (f‐BCN) is easily exfoliated via various mechanical methods. Compared to commercial hexagonal boron nitride nanoplates, flash boron nitride sheets demonstrate more stable dispersibility in aqueous solution. Furthermore, the addition of f‐BCN as barrier fillers in poly(vinyl alcohol) nanocomposites shows higher corrosion protection efficiency, ≈97.3% in 0.5 m H2SO4 and ≈92.1% in 3.5 wt% NaCl (aq).</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202202666</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Additives ; anticorrosion ; Boron ; Boron nitride ; boron–carbon–nitrogen ternary compounds ; Carbon ; Copper ; Corrosion resistance ; flash Joule heating ; Interlayers ; Lattices ; Materials science ; mechanical exfoliation ; Misalignment ; Nanocomposites ; Nitrogen ; Ohmic dissipation ; Optical properties ; Polyvinyl alcohol ; Resistance heating ; Saline solutions ; Sulfuric acid ; Synthesis ; turbostratic materials ; Two dimensional materials</subject><ispartof>Advanced materials (Weinheim), 2022-08, Vol.34 (33), p.e2202666-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3506-a6d23987e8634664dd9de23850231f5182f13c154c6423dc37d5469a790ed3973</citedby><cites>FETCH-LOGICAL-c3506-a6d23987e8634664dd9de23850231f5182f13c154c6423dc37d5469a790ed3973</cites><orcidid>0000-0002-8479-9328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202202666$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202202666$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Weiyin</creatorcontrib><creatorcontrib>Li, John Tianci</creatorcontrib><creatorcontrib>Ge, Chang</creatorcontrib><creatorcontrib>Yuan, Zhe</creatorcontrib><creatorcontrib>Algozeeb, Wala A.</creatorcontrib><creatorcontrib>Advincula, Paul A.</creatorcontrib><creatorcontrib>Gao, Guanhui</creatorcontrib><creatorcontrib>Chen, Jinhang</creatorcontrib><creatorcontrib>Ling, Kexin</creatorcontrib><creatorcontrib>Choi, Chi Hun</creatorcontrib><creatorcontrib>McHugh, Emily A.</creatorcontrib><creatorcontrib>Wyss, Kevin M.</creatorcontrib><creatorcontrib>Luong, Duy Xuan</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Han, Yimo</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><title>Turbostratic Boron–Carbon–Nitrogen and Boron Nitride by Flash Joule Heating</title><title>Advanced materials (Weinheim)</title><description>Turbostratic layers in 2D materials have an interlayer misalignment. The lack of alignment expands the intrinsic interlayer distances and weakens the optical and electronic interactions between adjacent layers. This introduces properties distinct from those structures with well‐aligned lattices and strong coupling interactions. However, direct and rapid synthesis of turbostratic materials remains a challenge owing to their thermodynamically metastable properties. Here, a flash Joule heating (FJH) method to achieve bulk synthesis of boron–carbon–nitrogen ternary compounds with turbostratic structures by a kinetically controlled ultrafast cooling process that takes place within milliseconds (103 to 104 K s−1) is reported. Theoretical calculations support the existence of turbostratic structures and provide estimates of the energy barriers with respect to conversion into the corresponding well‐aligned counterparts. When using non‐carbon conductive additives, a direct synthesis of boron nitride is possible. The turbostratic nature facilitates mechanical exfoliation and more stable dispersions. Accordingly, the addition of flash products to a poly(vinyl alcohol) nanocomposite film coating a copper surface greatly improves the copper's resistance to corrosion in 0.5 m sulfuric acid or 3.5 wt% saline solution. FJH allows the use of bulk materials as reactants and provides a rapid approach to large quantities of the hitherto hard‐to‐access turbostratic materials. Turbostratic boron–carbon–nitrogen and boron nitride compounds with various chemical compositions can be prepared by the ultrafast and solvent‐free flash Joule heating method. The obtained flash boron–carbon–nitrogen (f‐BCN) is easily exfoliated via various mechanical methods. Compared to commercial hexagonal boron nitride nanoplates, flash boron nitride sheets demonstrate more stable dispersibility in aqueous solution. Furthermore, the addition of f‐BCN as barrier fillers in poly(vinyl alcohol) nanocomposites shows higher corrosion protection efficiency, ≈97.3% in 0.5 m H2SO4 and ≈92.1% in 3.5 wt% NaCl (aq).</description><subject>Additives</subject><subject>anticorrosion</subject><subject>Boron</subject><subject>Boron nitride</subject><subject>boron–carbon–nitrogen ternary compounds</subject><subject>Carbon</subject><subject>Copper</subject><subject>Corrosion resistance</subject><subject>flash Joule heating</subject><subject>Interlayers</subject><subject>Lattices</subject><subject>Materials science</subject><subject>mechanical exfoliation</subject><subject>Misalignment</subject><subject>Nanocomposites</subject><subject>Nitrogen</subject><subject>Ohmic dissipation</subject><subject>Optical properties</subject><subject>Polyvinyl alcohol</subject><subject>Resistance heating</subject><subject>Saline solutions</subject><subject>Sulfuric acid</subject><subject>Synthesis</subject><subject>turbostratic materials</subject><subject>Two dimensional materials</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQxhdRsFavngNevKTO_k32WKu1SrWXel622U1NSbN1N0F68x18Q5_EhIiCF2Fghpnf9zF8CJ1jGGEAcqXNVo8IkLaEEAdogDnBMQPJD9EAJOWxFCw9RichbABAChADtFg2fuVC7XVdZNG18676fP-Y6HbZDU9F7d3aVpGuTH-NulVhbLTaR9NSh5fowTWljWa2dajWp-go12WwZ999iJ6nt8vJLJ4v7u4n43mcUQ4i1sIQKtPEpoIyIZgx0lhCUw6E4pzjlOSYZpizTDBCTUYTw5mQOpFgDZUJHaLL3nfn3WtjQ622RchsWerKuiYoIlIMlCSMtujFH3TjGl-13ymSAKWCS5G21KinMu9C8DZXO19std8rDKrLV3X5qp98W4HsBW9Faff_0Gp88zj-1X4Bnuh-Ug</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Chen, Weiyin</creator><creator>Li, John Tianci</creator><creator>Ge, Chang</creator><creator>Yuan, Zhe</creator><creator>Algozeeb, Wala A.</creator><creator>Advincula, Paul A.</creator><creator>Gao, Guanhui</creator><creator>Chen, Jinhang</creator><creator>Ling, Kexin</creator><creator>Choi, Chi Hun</creator><creator>McHugh, Emily A.</creator><creator>Wyss, Kevin M.</creator><creator>Luong, Duy Xuan</creator><creator>Wang, Zhe</creator><creator>Han, Yimo</creator><creator>Tour, James M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid></search><sort><creationdate>20220801</creationdate><title>Turbostratic Boron–Carbon–Nitrogen and Boron Nitride by Flash Joule Heating</title><author>Chen, Weiyin ; Li, John Tianci ; Ge, Chang ; Yuan, Zhe ; Algozeeb, Wala A. ; Advincula, Paul A. ; Gao, Guanhui ; Chen, Jinhang ; Ling, Kexin ; Choi, Chi Hun ; McHugh, Emily A. ; Wyss, Kevin M. ; Luong, Duy Xuan ; Wang, Zhe ; Han, Yimo ; Tour, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3506-a6d23987e8634664dd9de23850231f5182f13c154c6423dc37d5469a790ed3973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>anticorrosion</topic><topic>Boron</topic><topic>Boron nitride</topic><topic>boron–carbon–nitrogen ternary compounds</topic><topic>Carbon</topic><topic>Copper</topic><topic>Corrosion resistance</topic><topic>flash Joule heating</topic><topic>Interlayers</topic><topic>Lattices</topic><topic>Materials science</topic><topic>mechanical exfoliation</topic><topic>Misalignment</topic><topic>Nanocomposites</topic><topic>Nitrogen</topic><topic>Ohmic dissipation</topic><topic>Optical properties</topic><topic>Polyvinyl alcohol</topic><topic>Resistance heating</topic><topic>Saline solutions</topic><topic>Sulfuric acid</topic><topic>Synthesis</topic><topic>turbostratic materials</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Weiyin</creatorcontrib><creatorcontrib>Li, John Tianci</creatorcontrib><creatorcontrib>Ge, Chang</creatorcontrib><creatorcontrib>Yuan, Zhe</creatorcontrib><creatorcontrib>Algozeeb, Wala A.</creatorcontrib><creatorcontrib>Advincula, Paul A.</creatorcontrib><creatorcontrib>Gao, Guanhui</creatorcontrib><creatorcontrib>Chen, Jinhang</creatorcontrib><creatorcontrib>Ling, Kexin</creatorcontrib><creatorcontrib>Choi, Chi Hun</creatorcontrib><creatorcontrib>McHugh, Emily A.</creatorcontrib><creatorcontrib>Wyss, Kevin M.</creatorcontrib><creatorcontrib>Luong, Duy Xuan</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Han, Yimo</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Weiyin</au><au>Li, John Tianci</au><au>Ge, Chang</au><au>Yuan, Zhe</au><au>Algozeeb, Wala A.</au><au>Advincula, Paul A.</au><au>Gao, Guanhui</au><au>Chen, Jinhang</au><au>Ling, Kexin</au><au>Choi, Chi Hun</au><au>McHugh, Emily A.</au><au>Wyss, Kevin M.</au><au>Luong, Duy Xuan</au><au>Wang, Zhe</au><au>Han, Yimo</au><au>Tour, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbostratic Boron–Carbon–Nitrogen and Boron Nitride by Flash Joule Heating</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>34</volume><issue>33</issue><spage>e2202666</spage><epage>n/a</epage><pages>e2202666-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Turbostratic layers in 2D materials have an interlayer misalignment. The lack of alignment expands the intrinsic interlayer distances and weakens the optical and electronic interactions between adjacent layers. This introduces properties distinct from those structures with well‐aligned lattices and strong coupling interactions. However, direct and rapid synthesis of turbostratic materials remains a challenge owing to their thermodynamically metastable properties. Here, a flash Joule heating (FJH) method to achieve bulk synthesis of boron–carbon–nitrogen ternary compounds with turbostratic structures by a kinetically controlled ultrafast cooling process that takes place within milliseconds (103 to 104 K s−1) is reported. Theoretical calculations support the existence of turbostratic structures and provide estimates of the energy barriers with respect to conversion into the corresponding well‐aligned counterparts. When using non‐carbon conductive additives, a direct synthesis of boron nitride is possible. The turbostratic nature facilitates mechanical exfoliation and more stable dispersions. Accordingly, the addition of flash products to a poly(vinyl alcohol) nanocomposite film coating a copper surface greatly improves the copper's resistance to corrosion in 0.5 m sulfuric acid or 3.5 wt% saline solution. FJH allows the use of bulk materials as reactants and provides a rapid approach to large quantities of the hitherto hard‐to‐access turbostratic materials. Turbostratic boron–carbon–nitrogen and boron nitride compounds with various chemical compositions can be prepared by the ultrafast and solvent‐free flash Joule heating method. The obtained flash boron–carbon–nitrogen (f‐BCN) is easily exfoliated via various mechanical methods. Compared to commercial hexagonal boron nitride nanoplates, flash boron nitride sheets demonstrate more stable dispersibility in aqueous solution. Furthermore, the addition of f‐BCN as barrier fillers in poly(vinyl alcohol) nanocomposites shows higher corrosion protection efficiency, ≈97.3% in 0.5 m H2SO4 and ≈92.1% in 3.5 wt% NaCl (aq).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202202666</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-08, Vol.34 (33), p.e2202666-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2681032743
source Wiley Online Library Journals Frontfile Complete
subjects Additives
anticorrosion
Boron
Boron nitride
boron–carbon–nitrogen ternary compounds
Carbon
Copper
Corrosion resistance
flash Joule heating
Interlayers
Lattices
Materials science
mechanical exfoliation
Misalignment
Nanocomposites
Nitrogen
Ohmic dissipation
Optical properties
Polyvinyl alcohol
Resistance heating
Saline solutions
Sulfuric acid
Synthesis
turbostratic materials
Two dimensional materials
title Turbostratic Boron–Carbon–Nitrogen and Boron Nitride by Flash Joule Heating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbostratic%20Boron%E2%80%93Carbon%E2%80%93Nitrogen%20and%20Boron%20Nitride%20by%20Flash%20Joule%20Heating&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Weiyin&rft.date=2022-08-01&rft.volume=34&rft.issue=33&rft.spage=e2202666&rft.epage=n/a&rft.pages=e2202666-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202202666&rft_dat=%3Cproquest_cross%3E2681032743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703365968&rft_id=info:pmid/&rfr_iscdi=true