The characterization of iron aluminide green sheet thermal properties
The first step in the fabrication of a thin FeAl sheet from metal powder is the formation of a green sheet, by either cold rolling or tape casting a mixture of 60 μm FeAl particles and organic binding agents. The green sheet composite is approx. 700 μm thick with a bulk density which is approx. 3.6...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 1998-12, Vol.258 (1), p.266-269 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | 1 |
container_start_page | 266 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 258 |
creator | Watkins, Michael L. Hinders, Mark K. |
description | The first step in the fabrication of a thin FeAl sheet from metal powder is the formation of a green sheet, by either cold rolling or tape casting a mixture of 60 μm FeAl particles and organic binding agents. The green sheet composite is approx. 700 μm thick with a bulk density which is approx. 3.6 g/cm
3. The composite then undergoes a series of process steps (binder elimination, densification, sintering, annealing) to form the final FeAl sheet product which is approx. 200 μm thick with a density of approx. 6.0 g/cm
3. Non-uniformities within the green sheet have been found to be a major contributor to material failure in subsequent sheet processing, forming and cutting. This paper describes a non-contact and non-destructive method for inspecting iron aluminide green sheet material during processing. This thermographic inspection technique takes advantage of the differences in heat flow arising from the variations in mass distribution and sheet thickness, as well as green sheet constituents, voids and cracks. The ability to detect and correct variations during green sheet formation has the potential to significantly improve the quality of the final product. |
doi_str_mv | 10.1016/S0921-5093(98)00943-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26806943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509398009435</els_id><sourcerecordid>26806943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-eafc120dc1f6b84406bc401da1d9c562a486f7078aef2ec49fb9243b4f23f9ee3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QZiFiC5GbyaPTlYipT6g4MK6DpnMjROZztQkFfTXO21Fl67O5rv3cD5CTilcUaDy-hlUQXMBil2o8hJAcZaLPTKi5YTlXDG5T0a_yCE5ivENACgHMSKzRYOZbUwwNmHwXyb5vst6l_kwpGnXS9_5GrPXgNhlsUFMWWowLE2brUK_wpA8xmNy4Ewb8eQnx-TlbraYPuTzp_vH6e08t4yKlKNxlhZQW-pkVXIOsrIcaG1orayQheGldBOYlAZdgZYrV6mCs4q7gjmFyMbkfPd3qH5fY0x66aPFtjUd9uuoC1mCHOYPoNiBNvQxBnR6FfzShE9NQW-k6a00vTGiVam30rQY7s5-Cky0pnXBdNbHv2MpheJywG52GA5jPzwGHa3HzmLtA9qk697_U_QNmOKBqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26806943</pqid></control><display><type>article</type><title>The characterization of iron aluminide green sheet thermal properties</title><source>Elsevier ScienceDirect Journals</source><creator>Watkins, Michael L. ; Hinders, Mark K.</creator><creatorcontrib>Watkins, Michael L. ; Hinders, Mark K.</creatorcontrib><description>The first step in the fabrication of a thin FeAl sheet from metal powder is the formation of a green sheet, by either cold rolling or tape casting a mixture of 60 μm FeAl particles and organic binding agents. The green sheet composite is approx. 700 μm thick with a bulk density which is approx. 3.6 g/cm
3. The composite then undergoes a series of process steps (binder elimination, densification, sintering, annealing) to form the final FeAl sheet product which is approx. 200 μm thick with a density of approx. 6.0 g/cm
3. Non-uniformities within the green sheet have been found to be a major contributor to material failure in subsequent sheet processing, forming and cutting. This paper describes a non-contact and non-destructive method for inspecting iron aluminide green sheet material during processing. This thermographic inspection technique takes advantage of the differences in heat flow arising from the variations in mass distribution and sheet thickness, as well as green sheet constituents, voids and cracks. The ability to detect and correct variations during green sheet formation has the potential to significantly improve the quality of the final product.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/S0921-5093(98)00943-5</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analysing. Testing. Standards ; Applied sciences ; Exact sciences and technology ; Inspection ; Iron aluminide ; Measurement of properties and materials state ; Metal powders ; Metals. Metallurgy ; Nondestructive testing ; Powder metal ; Powder metallurgy. Composite materials ; Production techniques ; Thermography</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 1998-12, Vol.258 (1), p.266-269</ispartof><rights>1998 Elsevier Science S.A.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-eafc120dc1f6b84406bc401da1d9c562a486f7078aef2ec49fb9243b4f23f9ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509398009435$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1665946$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Watkins, Michael L.</creatorcontrib><creatorcontrib>Hinders, Mark K.</creatorcontrib><title>The characterization of iron aluminide green sheet thermal properties</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The first step in the fabrication of a thin FeAl sheet from metal powder is the formation of a green sheet, by either cold rolling or tape casting a mixture of 60 μm FeAl particles and organic binding agents. The green sheet composite is approx. 700 μm thick with a bulk density which is approx. 3.6 g/cm
3. The composite then undergoes a series of process steps (binder elimination, densification, sintering, annealing) to form the final FeAl sheet product which is approx. 200 μm thick with a density of approx. 6.0 g/cm
3. Non-uniformities within the green sheet have been found to be a major contributor to material failure in subsequent sheet processing, forming and cutting. This paper describes a non-contact and non-destructive method for inspecting iron aluminide green sheet material during processing. This thermographic inspection technique takes advantage of the differences in heat flow arising from the variations in mass distribution and sheet thickness, as well as green sheet constituents, voids and cracks. The ability to detect and correct variations during green sheet formation has the potential to significantly improve the quality of the final product.</description><subject>Analysing. Testing. Standards</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Inspection</subject><subject>Iron aluminide</subject><subject>Measurement of properties and materials state</subject><subject>Metal powders</subject><subject>Metals. Metallurgy</subject><subject>Nondestructive testing</subject><subject>Powder metal</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Thermography</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QZiFiC5GbyaPTlYipT6g4MK6DpnMjROZztQkFfTXO21Fl67O5rv3cD5CTilcUaDy-hlUQXMBil2o8hJAcZaLPTKi5YTlXDG5T0a_yCE5ivENACgHMSKzRYOZbUwwNmHwXyb5vst6l_kwpGnXS9_5GrPXgNhlsUFMWWowLE2brUK_wpA8xmNy4Ewb8eQnx-TlbraYPuTzp_vH6e08t4yKlKNxlhZQW-pkVXIOsrIcaG1orayQheGldBOYlAZdgZYrV6mCs4q7gjmFyMbkfPd3qH5fY0x66aPFtjUd9uuoC1mCHOYPoNiBNvQxBnR6FfzShE9NQW-k6a00vTGiVam30rQY7s5-Cky0pnXBdNbHv2MpheJywG52GA5jPzwGHa3HzmLtA9qk697_U_QNmOKBqw</recordid><startdate>19981231</startdate><enddate>19981231</enddate><creator>Watkins, Michael L.</creator><creator>Hinders, Mark K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19981231</creationdate><title>The characterization of iron aluminide green sheet thermal properties</title><author>Watkins, Michael L. ; Hinders, Mark K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-eafc120dc1f6b84406bc401da1d9c562a486f7078aef2ec49fb9243b4f23f9ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Analysing. Testing. Standards</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Inspection</topic><topic>Iron aluminide</topic><topic>Measurement of properties and materials state</topic><topic>Metal powders</topic><topic>Metals. Metallurgy</topic><topic>Nondestructive testing</topic><topic>Powder metal</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Thermography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watkins, Michael L.</creatorcontrib><creatorcontrib>Hinders, Mark K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watkins, Michael L.</au><au>Hinders, Mark K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The characterization of iron aluminide green sheet thermal properties</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>1998-12-31</date><risdate>1998</risdate><volume>258</volume><issue>1</issue><spage>266</spage><epage>269</epage><pages>266-269</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The first step in the fabrication of a thin FeAl sheet from metal powder is the formation of a green sheet, by either cold rolling or tape casting a mixture of 60 μm FeAl particles and organic binding agents. The green sheet composite is approx. 700 μm thick with a bulk density which is approx. 3.6 g/cm
3. The composite then undergoes a series of process steps (binder elimination, densification, sintering, annealing) to form the final FeAl sheet product which is approx. 200 μm thick with a density of approx. 6.0 g/cm
3. Non-uniformities within the green sheet have been found to be a major contributor to material failure in subsequent sheet processing, forming and cutting. This paper describes a non-contact and non-destructive method for inspecting iron aluminide green sheet material during processing. This thermographic inspection technique takes advantage of the differences in heat flow arising from the variations in mass distribution and sheet thickness, as well as green sheet constituents, voids and cracks. The ability to detect and correct variations during green sheet formation has the potential to significantly improve the quality of the final product.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0921-5093(98)00943-5</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 1998-12, Vol.258 (1), p.266-269 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_26806943 |
source | Elsevier ScienceDirect Journals |
subjects | Analysing. Testing. Standards Applied sciences Exact sciences and technology Inspection Iron aluminide Measurement of properties and materials state Metal powders Metals. Metallurgy Nondestructive testing Powder metal Powder metallurgy. Composite materials Production techniques Thermography |
title | The characterization of iron aluminide green sheet thermal properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20characterization%20of%20iron%20aluminide%20green%20sheet%20thermal%20properties&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Watkins,%20Michael%20L.&rft.date=1998-12-31&rft.volume=258&rft.issue=1&rft.spage=266&rft.epage=269&rft.pages=266-269&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/S0921-5093(98)00943-5&rft_dat=%3Cproquest_cross%3E26806943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26806943&rft_id=info:pmid/&rft_els_id=S0921509398009435&rfr_iscdi=true |